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Classical stochastic optimization

minimize
x

E
z∼P

[
`(x , z)

]
• stochastic approximation (Robbins & Monro 1951)

xt+1 = xt − ηt∇`(xt , zt)

dominant algorithmic framework in modern deep learning

• many variants

– SGD with momentum, Nesterov acceleration
– AdaGrad, RMSProp, Adam, . . .
– dual averaging
– clipped stochastic gradient

• convergence guarantees require P being fixed (zt ∼ P for all t)
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Decision-dependent distributional shift

minimize
x

E
z∼D(x)

[
`(x , z)

]

many applications in practice

• active interaction (gaming by manipulating features)

– spam filtering
– fraud detection
– detection of abusive content (fake news, hate speech, . . . )

• passive feedback

– banks use classifier to approve load applications, impacting
credit score of applications for downstream tasks

called performative prediction in machine learning context
(Perdomo, Zrnic, Mendler-Dünner & Hardt 2020)
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Strategic classification
(Hardt, Megiddo, Papadimitriou & Wootters 2016)

two-player online game between
• population of agents, each with feature a ∈ Rm and label b ∈ R
• an institution that deploys classifier hx , predicts hx(a) ≈ b

during each round of the game:
• agents adapt features to increase chance of positive classification

â(hx , a) := arg max
a′

{
u(hx , a

′)− c(a, a′)
}

– u(hx , ·) is utility function of agent
– c(a, ·) is cost of altering features

• institution can adjust x to minimize classification error

minimize
x

E
(â,b)∼D(x)

[`(hx(â), b)]

– can only use random samples of agents

(in practice, agents unlikely play best responses, but (â, b) ∼ D(x))
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â(hx , a) := arg max
a′

{
u(hx , a

′)− c(a, a′)
}

– u(hx , ·) is utility function of agent
– c(a, ·) is cost of altering features

• institution can adjust x to minimize classification error

minimize
x

E
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Optimization model

stochastic optimization with decision-dependent distributions

minimize
x

E
z∼D(x)

[
`(x , z)

]
+ r(x)

• D(x) decision/state-dependent, accessible by sampling

• `(·, z) is a convex loss function

• r(·) is a convex, structure-inducing regularizer

hard to solve in general: nonsmooth, nonconvex

two paths forward:

1. impose structure on D(·) and solve
(Ahmed’00, Dupac̆ová’06, Goel-Grossman’06, Hassani et al.’20, . . . )

2. settle for an alternative, efficiently computable solution concept
(Perdomo, Zrnic, Mendler-Dünner & Hardt 2020)
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Equilibrium

• notation:

fy (x) = E
z∼D(y)

`(x , z), ∇fy (x) = E
z∼D(y)

∇`(x , z)

• definition of equilibrium (Perdomo et al ’20):

x̄ = argmin
x

“no incentive to change x̄ based only on response D(x̄)”

• algorithmically: these are fixed points of the map

S(y) := argmin
x

fy (x) + r(x)

suggests a fixed-point algorithm (repeated minimization)

5



Equilibrium

• notation:

fy (x) = E
z∼D(y)

`(x , z), ∇fy (x) = E
z∼D(y)

∇`(x , z)

• definition of equilibrium (Perdomo et al ’20):

x̄ = argmin
x

E
z∼D(x̄)

`(x , z) + r(x)

“no incentive to change x̄ based only on response D(x̄)”

• algorithmically: these are fixed points of the map

S(y) := argmin
x

fy (x) + r(x)

suggests a fixed-point algorithm (repeated minimization)

5



Equilibrium

• notation:

fy (x) = E
z∼D(y)

`(x , z), ∇fy (x) = E
z∼D(y)

∇`(x , z)

• definition of equilibrium (Perdomo et al ’20):

x̄ = argmin
x

fx̄(x) + r(x)

“no incentive to change x̄ based only on response D(x̄)”

• algorithmically: these are fixed points of the map

S(y) := argmin
x

fy (x) + r(x)

suggests a fixed-point algorithm (repeated minimization)

5



Equilibrium

• notation:

fy (x) = E
z∼D(y)

`(x , z), ∇fy (x) = E
z∼D(y)

∇`(x , z)

• definition of equilibrium (Perdomo et al ’20):

x̄ = argmin
x

fx̄(x) + r(x)

“no incentive to change x̄ based only on response D(x̄)”

• algorithmically: these are fixed points of the map

S(y) := argmin
x

fy (x) + r(x)

suggests a fixed-point algorithm (repeated minimization)

5



Performative prediction

Perdomo, Zrnic, Mendler-Dünner & Hardt (ICML 2020, NeurIPS 2020):

• proposed this framework (performative stable solutions)

• established existence of equilibria

• showed convergence of following algorithms:

– repeated risk minimization (conceptual)

xt+1 = argmin
x
{fxt (x) + r(x)}

– projected gradient descent (conceptual)

xt+1 = proxηr (xt − η∇fxt (xt))

– projected stochastic gradient (practical)

sample zt ∼ D(xt)

xt+1 = proxηr (xt − η∇`(xt , zt))
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Our contributions

• goal: find equilibrium

x̄ = argmin
x

E
z∼D(x̄)

[
f (x , z)

]
+ r(x)

• Meta Theorem: Algorithms that sample from D(xt) can be
viewed as same algorithms applied to the static problem

minimize
x

E
z∼D(x̄)

[
f (x , z)

]
+ r(x)

with “bias,” and the “bias”→ 0 linearly as xt → x̄ .

• sharp convergence guarantees for many popular algorithms:

– proximal point
– stochastic gradient
– clipped stochastic gradient
– dual averaging

and their accelerated and proximal variants
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Outline of rest of talk

• notation and assumptions

• two deviation inequalities

• reduction to online convex optimization

• (accelerated) stochastic gradient method

• model-based algorithms

8



Notation and assumptions

• strong convexity: loss `(·, z) is α-strongly convex:

`(x , z) ≥ `(y , z) + 〈∇`(y , z), x − y〉+
α

2
‖x − y‖2

• smoothness: `(·, ·) satisfies

‖∇`(x , z)−∇`(x ′, z)‖ ≤ L · ‖x − x ′‖
‖∇`(x , z)−∇`(x , z ′)‖ ≤ β · ‖z − z ′‖

• sensitivity of D(·) in Wasserstein-1 distance

W1

(
D(x),D(y)

)
≤ γ · ‖x − y‖

conditioning measures:

κ =
L

α
and ρ =

γβ

α

9



Interesting regime is ρ ∈ (0, 1)

• repeated risk minimization (RRM)

xt+1 = argmin
x

fxt (x) + r(x)

theorem (Perdomo et al. 2020):

– if ρ < 1, then RRM converges to x̄ at linear rate ρ
– if ρ > 1, then RRM may diverge

• proximal point method (PPM)

xt+1 = argmin
x

fxt (x) + r(x) +
1

2η
‖x − xt‖2

theorem (Drusvyatskiy-X 2020):
If ρ < 1, then PPM converges to x̄ at linear rate 1− 1−ρ

1+(αη)−1

empirically: PPM more “distributionally stable”

10
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Numerical illustration

chasing the mean:

minimize
x∈R2

E
z∼D(x)

‖x − z‖2 where D(x1, x2) = N(ρx2, ρx1), I )

• α = β = 1 and γ = ρ, thus

ρ = γβ/α

• vector field

∇fy (x) = x − Ez∼D(y)(z)

=

[
x1 − ρy2

x2 − ρy1

]
• equilibrium point: x̄ = (0, 0)

∇fx(x) versus ∇fx̄(x)

Figure: ρ = 1.25
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Empirical study: regularization helps!

• RRM: xt+1 = argminx fxt (x) + r(x)

• PPM: xt+1 = argminx fxt (x) + r(x) + 1
2η‖x − xt‖2

Figure: Strategic classification with ρ > 1

(conceptual algorithms, not feasible for practical applications)
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Two deviation inequalities

• definitions:

fy (x) := E
z∼D(y)

`(x , z), Gy (x , x ′) := fy (x)− fy (x ′)

• lemma (gradient deviation): for all y , y ′ ∈ Rd it holds:

sup
x∈Rd

‖∇fy (x)−∇fy ′(x)‖ ≤ γβ · ‖y − y ′‖

implication: Bias(x) := ‖∇fx(x)−∇fx̄(x)‖ ≤ γβ · ‖x − x̄‖

• lemma (gap deviation): all x , x ′ ∈ Rd and y , y ′ ∈ Rd satisfy:

Gy (x , x ′)− Gy ′(x , x ′) ≤ γβ · ‖x − x ′‖ · ‖y − y ′‖

implication: Gx(x , x̄)− Gx̄(x , x̄) ≤ γβ · ‖x − x̄‖2

(can be offset by strong convexity)
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Online convex optimization

• a repeated game: for t = 1, 2, . . .
– player chooses xt ∈ dom r
– nature reveals function `t and player pays `t(xt)

player’s goal: minimize the regret

Rt :=
t∑

i=1

(
`i (xi ) + r(xi )

)
−min

x

t∑
i=1

(
`i (x) + r(x)

)

• algorithms:
– online prox-gradient (Duchi-Singer 2009)

– regularized dual averaging (X 2010)

– follow-the-regularized-leader (FTRL) (McMahan 2011, . . . )

• guarantees

`t are α-strongly convex on dom r

`t are G -Lipschitz on dom r

}
=⇒ Rt = O

(
G 2 log t

α

)
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Reduction to online convex optimization

• finding performative equilibrium is equivalent to

minimize
x

ϕ(x) := E
z∼D(x̄)

[`(x , z)] + r(x)

• theorem (Drusvyatskiy-X 2020):
Suppose ρ ∈ (0, 1

2 ). Run an online algorithm where in iteration t,
nature draws zt ∼ D(xt) and declares `t(xt) = `(xt , zt). Then

E

[
ϕ

(
1

t

t∑
i=1

xi

)
− ϕ(x̄)

]
≤ E[Rt ]

(1− 2ρ) t
= O

(
log t

(1− 2ρ)αt

)
• downside: strong assumptions (bounded domain, Lipschitz loss)

instead, can analyze algorithms directly, assuming finite-variance:

E
z∼D(x)

‖∇`(x , z)−∇fx(x)‖2 ≤ σ2, ∀x

15
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instead, can analyze algorithms directly, assuming finite-variance:

E
z∼D(x)

‖∇`(x , z)−∇fx(x)‖2 ≤ σ2, ∀x
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Reduction to online convex optimization
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Proximal stochastic gradient (SG)

• algorithm: sample zt ∼ D(xt)

xt+1 = proxηr (xt − η∇`(xt , zt))

• theorem (Drusvyatskiy-X 2020, Mendler-Dünner et al. 2020)

– If ρ < 1, proximal SG finds x with ‖x − x̄‖2 ≤ ε using

O
(
κ · log

(
‖x0 − x̄‖2

ε

)
+

σ2

(1− ρ)2α2ε

)
samples

– If ρ < 1
2 , proximal SG finds x with E[ϕ(x)− ϕ(x̄)] ≤ ε using

O
(
κ · log

(
ϕ(x0)− ϕ(x̄)

ε

)
+

σ2

(1− 2ρ)αε

)
samples

• remark: reduces to classical rate if ρ = 0 (e.g., Lan 2010)
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Numerical experiments of SG method

chasing the mean: SG with constant step size η = 0.01

(a) function value gap of x̂t (b) squared distance to x̄

• ϕ(x̂t)− ϕ(x̄) decreases linearly to noise level controlled by η

• linear rate degrades as ρ tends to 1/2

• ‖xt − x̄‖2 decreases linearly to noise level depending on η and ρ

17



Proximal accelerated stochastic gradient (ASG)

• algorithm: (adapted from Kulunchakov-Mairal 2019)

sample zt ∼ D(yt−1) and set gt = ∇`(yt−1, zt)

xt = proxηt r (yt−1 − ηgt)

yt = xt +
1−
√
ηα(1−2ρ)

1+
√
ηα(1−2ρ)

(xt − xt−1)

• theorem (Drusvyatskiy-X 2020): If ρ . κ−1/4, proximal ASG
finds x satisfying E[ϕ(x)− ϕ(x̄)] ≤ ε using

O
(√

κ · log

(
ϕ(x0)− ϕ(x̄)

ε

)
+
σ2

αε

)
samples

– ρ . κ−1/4 looks suboptimal; can it be improved?
– somewhat surprising to have acceleration for any ρ > 0

• proof: technical, using variant of stochastic estimate sequences

18



Proximal accelerated stochastic gradient (ASG)

• algorithm: (adapted from Kulunchakov-Mairal 2019)

sample zt ∼ D(yt−1) and set gt = ∇`(yt−1, zt)

xt = proxηt r (yt−1 − ηgt)

yt = xt +
1−
√
ηα(1−2ρ)

1+
√
ηα(1−2ρ)

(xt − xt−1)

• theorem (Drusvyatskiy-X 2020): If ρ . κ−1/4, proximal ASG
finds x satisfying E[ϕ(x)− ϕ(x̄)] ≤ ε using

O
(√

κ · log

(
ϕ(x0)− ϕ(x̄)

ε

)
+
σ2

αε

)
samples

– ρ . κ−1/4 looks suboptimal; can it be improved?
– somewhat surprising to have acceleration for any ρ > 0

• proof: technical, using variant of stochastic estimate sequences
18



Acceleration works mysteriously well!

(a) γ = 0. (b) γ = 5.

(c) γ = 100. (d) γ = 250.

experiments with a strategic classification problem (σ = 0)
19



Model-based algorithms

1

`(y)

`x(y)

prox−point

`x(y) = `(y)

1

`(y)

`x(y)

gradient

`x(y) = `(x) + 〈∇`(x), y − x〉

1

`(y)

`x(y)

clipped gradient

`x(y) = (`(x) + 〈∇`(x), y − x〉)+

algorithm template:

sample zt ∼ D(xt)

xt+1 = argmin
y

{
`xt (y , zt) + r(y) +

1

2η
‖y − xt‖2

}
(clipped gradient model introduced in Asi-Duchi 2019)
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Model-based algorithms

Assumptions: there exist α1, α2 ≥ 0 such that

• convexity

`x(·, z) is convex, `x(·, z) + r is α1-strongly convex

• bias/variance

E
z

[∇`x(x , z)] = ∇fx(x), E
z
‖∇`x(x , z)−∇fx(x)‖2 ≤ σ2

• accuracy

E
z

[`x(x , z)] = fx(x), E
z

[`x(y , z)] +
α2

2
‖x − y‖2 ≤ fx(y)

remark:

• similar assumptions in (Davis-Drusvyatskiy ’19, Asi-Duchi ’19)

• tighter models ⇒ better algorithms (Ryu-Boyd ’14, Asi-Duchi ’19)
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Model-based algorithms

• algorithm: sample zt ∼ D(xt)

xt+1 = argmin
y

{
`xt (y , zt) + r(y) +

1

2η
‖y − xt‖2

}
• theorem (Drusvyatskiy-X ’20)

– if γβ
α1+α2

< 1
2 , algorithm finds x with E[ϕ(x)− ϕ(x̄)] ≤ ε using

O
(

L

α1 + α2
· log

(
ϕ(x0)− ϕ(x̄)

ε

)
+

σ2

(α1 + α2)ε

)
samples

– if γβ
α1+α2

< 1, algorithm finds x with ‖x − x̄‖2 ≤ ε using

O
(

L

α1 + α2
· log

(
‖x0 − x̄‖2

ε

)
+

σ2

(α1 + α2)2ε

)
samples

• rates for stochastic PPM and clipped gradient follow immediately
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Numerical experiments of model-based algorithms

example of strategic classification, step size ηt = 2
α(t+1)

(a) γ = 0.1. (b) γ = 0.25.

• all three methods perform similarly asymptotically
• initial stage:

– SG sensitive to relatively large initial step sizes
– stochastic PPM and clipped gradient more preferable

(investigated in Asi-Duchi ’19 for fixed distribution)
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Inexact repeated minimization (IRM)

deployment of decision rule much more expensive than sampling

• state-wise algorithm

for s = 1, 2, . . . ,S do
us = xs−1,T

for t = 1, 2, . . . ,T do
sample zs,t ∼ D(us)

xs,t+1 = argminy

{
`xs,t (y , zs,t) + r(y) + 1

2η
‖y − xs,t‖2

}
• Mendler-Dünner, Perdomo, Zrnic, Hardt ’20: established

“deployments/samples” trade-off for IRM with SG method

• theorem (Drusvyatskiy-X ’20)
If ρ < 1, can implement IRM with all previous algorithms with
same sample efficiency and only 1

1−ρ log(1/ε) deployments.
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Summary

• stochastic optimization with decision-dependent distributions

minimize
x

E
z∼D(x)

[
`(x , z)

]
tractable solution concept: equilibrium (Perdomo et al. ’20)

x̄ = argmin
x

E
z∼D(x̄)

[
f (x , z)

]
+ r(x)

• Meta Theorem: Algorithms that sample from D(xt) can be
viewed as same algorithms applied to the static problem

minimize
x

E
z∼D(x̄)

[
f (x , z)

]
+ r(x)

with “bias,” and the “bias”→ 0 linearly as xt → x̄ .
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