

Stochastic Optimization with Decision-Dependent Distributions

Lin Xiao
Facebook AI Research

Joint work with
Dmitriy Drusvyatskiy (University of Washington)

Computer Science Seminar at UCLA
February 16, 2021

Classical stochastic optimization

$$\underset{x}{\text{minimize}} \quad \mathbf{E}_{z \sim \mathcal{P}} [\ell(x, z)]$$

- stochastic approximation (Robbins & Monro 1951)

$$x_{t+1} = x_t - \eta_t \nabla \ell(x_t, z_t)$$

dominant algorithmic framework in modern deep learning

- many variants
 - SGD with momentum, Nesterov acceleration
 - AdaGrad, RMSProp, Adam, ...
 - dual averaging
 - clipped stochastic gradient

Classical stochastic optimization

$$\underset{x}{\text{minimize}} \quad \mathbf{E}_{z \sim \mathcal{P}} [\ell(x, z)]$$

- stochastic approximation (Robbins & Monro 1951)

$$x_{t+1} = x_t - \eta_t \nabla \ell(x_t, z_t)$$

dominant algorithmic framework in modern deep learning

- many variants
 - SGD with momentum, Nesterov acceleration
 - AdaGrad, RMSProp, Adam, ...
 - dual averaging
 - clipped stochastic gradient
- convergence guarantees require \mathcal{P} being fixed ($z_t \sim \mathcal{P}$ for all t)

Decision-dependent distributional shift

$$\underset{x}{\text{minimize}} \mathbf{E}_{z \sim \mathcal{D}(x)} [\ell(x, z)]$$

Decision-dependent distributional shift

$$\underset{x}{\text{minimize}} \mathbf{E}_{z \sim \mathcal{D}(x)} [\ell(x, z)]$$

many applications in practice

- active interaction (gaming by manipulating features)
 - spam filtering
 - fraud detection
 - detection of abusive content (fake news, hate speech, ...)
- passive feedback
 - banks use classifier to approve loan applications, impacting credit score of applications for downstream tasks

Decision-dependent distributional shift

$$\underset{x}{\text{minimize}} \mathbf{E}_{z \sim \mathcal{D}(x)} [\ell(x, z)]$$

many applications in practice

- active interaction (gaming by manipulating features)
 - spam filtering
 - fraud detection
 - detection of abusive content (fake news, hate speech, ...)
- passive feedback
 - banks use classifier to approve loan applications, impacting credit score of applications for downstream tasks

called **performative prediction** in machine learning context
(Perdomo, Zrnic, Mendler-Dünner & Hardt 2020)

Strategic classification

(Hardt, Megiddo, Papadimitriou & Wootters 2016)

two-player online game between

- population of agents, each with feature $a \in \mathbf{R}^m$ and label $b \in \mathbf{R}$
- an institution that deploys classifier h_x , predicts $h_x(a) \approx b$

Strategic classification

(Hardt, Megiddo, Papadimitriou & Wootters 2016)

two-player online game between

- population of agents, each with feature $a \in \mathbf{R}^m$ and label $b \in \mathbf{R}$
- an institution that deploys classifier h_x , predicts $h_x(a) \approx b$

during each round of the game:

- agents adapt features to increase chance of positive classification

$$\hat{a}(h_x, a) := \arg \max_{a'} \{u(h_x, a') - c(a, a')\}$$

- $u(h_x, \cdot)$ is utility function of agent
- $c(a, \cdot)$ is cost of altering features

Strategic classification

(Hardt, Megiddo, Papadimitriou & Wootters 2016)

two-player online game between

- population of agents, each with feature $a \in \mathbf{R}^m$ and label $b \in \mathbf{R}$
- an institution that deploys classifier h_x , predicts $h_x(a) \approx b$

during each round of the game:

- agents adapt features to increase chance of positive classification

$$\hat{a}(h_x, a) := \arg \max_{a'} \{u(h_x, a') - c(a, a')\}$$

- $u(h_x, \cdot)$ is utility function of agent
- $c(a, \cdot)$ is cost of altering features
- institution can adjust x to minimize classification error

$$\underset{x}{\text{minimize}} \quad \mathbf{E}_{\substack{(\hat{a}, b) \sim \mathcal{D}(x)}} [\ell(h_x(\hat{a}), b)]$$

- can only use random samples of agents

Strategic classification

(Hardt, Megiddo, Papadimitriou & Wootters 2016)

two-player online game between

- population of agents, each with feature $a \in \mathbf{R}^m$ and label $b \in \mathbf{R}$
- an institution that deploys classifier h_x , predicts $h_x(a) \approx b$

during each round of the game:

- agents adapt features to increase chance of positive classification

$$\hat{a}(h_x, a) := \arg \max_{a'} \{u(h_x, a') - c(a, a')\}$$

- $u(h_x, \cdot)$ is utility function of agent
- $c(a, \cdot)$ is cost of altering features

- institution can adjust x to minimize classification error

$$\underset{x}{\text{minimize}} \quad \underset{(\hat{a}, b) \sim \mathcal{D}(x)}{\mathbf{E}} [\ell(h_x(\hat{a}), b)]$$

- can only use random samples of agents

(in practice, agents unlikely play best responses, but $(\hat{a}, b) \sim \mathcal{D}(x)$)

Optimization model

stochastic optimization with decision-dependent distributions

$$\underset{x}{\text{minimize}} \quad \underset{z \sim \mathcal{D}(x)}{\mathbf{E}} [\ell(x, z)] + r(x)$$

- $\mathcal{D}(x)$ decision/state-dependent, accessible by sampling
- $\ell(\cdot, z)$ is a convex loss function
- $r(\cdot)$ is a convex, structure-inducing regularizer

Optimization model

stochastic optimization with decision-dependent distributions

$$\underset{x}{\text{minimize}} \quad \underset{z \sim \mathcal{D}(x)}{\mathbf{E}} [\ell(x, z)] + r(x)$$

- $\mathcal{D}(x)$ decision/state-dependent, accessible by sampling
- $\ell(\cdot, z)$ is a convex loss function
- $r(\cdot)$ is a convex, structure-inducing regularizer

hard to solve in general: **nonsmooth, nonconvex**

two paths forward:

1. impose structure on $\mathcal{D}(\cdot)$ and solve
(Ahmed'00, Dupačová'06, Goel-Grossman'06, Hassani et al.'20, ...)
2. settle for an alternative, efficiently computable solution concept
(Perdomo, Zrnic, Mendler-Dünner & Hardt 2020)

Equilibrium

- notation:

$$f_y(x) = \mathbf{E}_{z \sim \mathcal{D}(y)} \ell(x, z), \quad \nabla f_y(x) = \mathbf{E}_{z \sim \mathcal{D}(y)} \nabla \ell(x, z)$$

Equilibrium

- notation:

$$f_y(x) = \mathbf{E}_{z \sim \mathcal{D}(y)} \ell(x, z), \quad \nabla f_y(x) = \mathbf{E}_{z \sim \mathcal{D}(y)} \nabla \ell(x, z)$$

- definition of **equilibrium** (Perdomo et al '20):

$$\bar{x} = \operatorname{argmin}_x \mathbf{E}_{z \sim \mathcal{D}(\bar{x})} \ell(x, z) + r(x)$$

“no incentive to change \bar{x} based only on response $\mathcal{D}(\bar{x})$ ”

Equilibrium

- notation:

$$f_y(x) = \mathbf{E}_{z \sim \mathcal{D}(y)} \ell(x, z), \quad \nabla f_y(x) = \mathbf{E}_{z \sim \mathcal{D}(y)} \nabla \ell(x, z)$$

- definition of **equilibrium** (Perdomo et al '20):

$$\bar{x} = \operatorname{argmin}_x f_{\bar{x}}(x) + r(x)$$

“no incentive to change \bar{x} based only on response $\mathcal{D}(\bar{x})$ ”

Equilibrium

- notation:

$$f_y(x) = \mathbf{E}_{z \sim \mathcal{D}(y)} \ell(x, z), \quad \nabla f_y(x) = \mathbf{E}_{z \sim \mathcal{D}(y)} \nabla \ell(x, z)$$

- definition of **equilibrium** (Perdomo et al '20):

$$\bar{x} = \operatorname{argmin}_x f_{\bar{x}}(x) + r(x)$$

“no incentive to change \bar{x} based only on response $\mathcal{D}(\bar{x})$ ”

- **algorithmically:** these are fixed points of the map

$$S(y) := \operatorname{argmin}_x f_y(x) + r(x)$$

suggests a fixed-point algorithm (repeated minimization)

Performative prediction

Perdomo, Zrnic, Mendler-Dünner & Hardt (ICML 2020, NeurIPS 2020):

- proposed this framework (performatively stable solutions)
- established existence of equilibria
- showed convergence of following algorithms:
 - repeated risk minimization (conceptual)

$$x_{t+1} = \operatorname{argmin}_x \{f_{x_t}(x) + r(x)\}$$

- projected gradient descent (conceptual)

$$x_{t+1} = \operatorname{prox}_{\eta r}(x_t - \eta \nabla f_{x_t}(x_t))$$

- projected stochastic gradient (practical)

$$\text{sample } z_t \sim \mathcal{D}(x_t)$$

$$x_{t+1} = \operatorname{prox}_{\eta r}(x_t - \eta \nabla \ell(x_t, z_t))$$

Our contributions

- goal: find equilibrium

$$\bar{x} = \underset{x}{\operatorname{argmin}} \underset{z \sim \mathcal{D}(\bar{x})}{\mathbf{E}} [f(x, z)] + r(x)$$

Our contributions

- goal: find equilibrium

$$\bar{x} = \underset{x}{\operatorname{argmin}} \underset{z \sim \mathcal{D}(\bar{x})}{\mathbf{E}} [f(x, z)] + r(x)$$

- **Meta Theorem:** Algorithms that sample from $\mathcal{D}(x_t)$ can be viewed as same algorithms applied to the **static problem**

$$\underset{x}{\operatorname{minimize}} \underset{z \sim \mathcal{D}(\bar{x})}{\mathbf{E}} [f(x, z)] + r(x)$$

with “bias,” and the “bias” $\rightarrow 0$ linearly as $x_t \rightarrow \bar{x}$.

Our contributions

- goal: find equilibrium

$$\bar{x} = \underset{x}{\operatorname{argmin}} \underset{z \sim \mathcal{D}(\bar{x})}{\mathbf{E}} [f(x, z)] + r(x)$$

- **Meta Theorem:** Algorithms that sample from $\mathcal{D}(x_t)$ can be viewed as same algorithms applied to the **static problem**

$$\underset{x}{\operatorname{minimize}} \underset{z \sim \mathcal{D}(\bar{x})}{\mathbf{E}} [f(x, z)] + r(x)$$

with “bias,” and the “bias” $\rightarrow 0$ linearly as $x_t \rightarrow \bar{x}$.

- sharp convergence guarantees for many popular algorithms:
 - proximal point
 - stochastic gradient
 - clipped stochastic gradient
 - dual averaging

and their **accelerated** and **proximal** variants

Outline of rest of talk

- notation and assumptions
- two deviation inequalities
- reduction to online convex optimization
- (accelerated) stochastic gradient method
- model-based algorithms

Notation and assumptions

- **strong convexity:** loss $\ell(\cdot, z)$ is α -strongly convex:

$$\ell(x, z) \geq \ell(y, z) + \langle \nabla \ell(y, z), x - y \rangle + \frac{\alpha}{2} \|x - y\|^2$$

- **smoothness:** $\ell(\cdot, \cdot)$ satisfies

$$\begin{aligned}\|\nabla \ell(x, z) - \nabla \ell(x', z)\| &\leq L \cdot \|x - x'\| \\ \|\nabla \ell(x, z) - \nabla \ell(x, z')\| &\leq \beta \cdot \|z - z'\|\end{aligned}$$

- **sensitivity** of $\mathcal{D}(\cdot)$ in Wasserstein-1 distance

$$W_1(\mathcal{D}(x), \mathcal{D}(y)) \leq \gamma \cdot \|x - y\|$$

conditioning measures:

$$\kappa = \frac{L}{\alpha} \quad \text{and} \quad \rho = \frac{\gamma \beta}{\alpha}$$

Interesting regime is $\rho \in (0, 1)$

- repeated risk minimization (RRM)

$$x_{t+1} = \operatorname{argmin}_x f_{x_t}(x) + r(x)$$

theorem (Perdomo et al. 2020):

- if $\rho < 1$, then RRM converges to \bar{x} at linear rate ρ
- if $\rho > 1$, then RRM may diverge

Interesting regime is $\rho \in (0, 1)$

- repeated risk minimization (RRM)

$$x_{t+1} = \operatorname{argmin}_x f_{x_t}(x) + r(x)$$

theorem (Perdomo et al. 2020):

- if $\rho < 1$, then RRM converges to \bar{x} at linear rate ρ
- if $\rho > 1$, then RRM may diverge

- proximal point method (PPM)

$$x_{t+1} = \operatorname{argmin}_x f_{x_t}(x) + r(x) + \frac{1}{2\eta} \|x - x_t\|^2$$

theorem (Drusvyatskiy-X 2020):

If $\rho < 1$, then PPM converges to \bar{x} at linear rate $1 - \frac{1-\rho}{1+(\alpha\eta)^{-1}}$

Interesting regime is $\rho \in (0, 1)$

- repeated risk minimization (RRM)

$$x_{t+1} = \operatorname{argmin}_x f_{x_t}(x) + r(x)$$

theorem (Perdomo et al. 2020):

- if $\rho < 1$, then RRM converges to \bar{x} at linear rate ρ
- if $\rho > 1$, then RRM may diverge

- proximal point method (PPM)

$$x_{t+1} = \operatorname{argmin}_x f_{x_t}(x) + r(x) + \frac{1}{2\eta} \|x - x_t\|^2$$

theorem (Drusvyatskiy-X 2020):

If $\rho < 1$, then PPM converges to \bar{x} at linear rate $1 - \frac{1-\rho}{1+(\alpha\eta)^{-1}}$

empirically: PPM more “distributionally stable”

Numerical illustration

chasing the mean:

$$\underset{x \in \mathbb{R}^2}{\text{minimize}} \quad \underset{z \sim \mathcal{D}(x)}{\mathbf{E}} \|x - z\|^2 \quad \text{where} \quad \mathcal{D}(x_1, x_2) = N(\rho x_2, \rho x_1), I$$

Numerical illustration

chasing the mean:

$$\underset{x \in \mathbb{R}^2}{\text{minimize}} \quad \underset{z \sim \mathcal{D}(x)}{\mathbf{E}} \|x - z\|^2 \quad \text{where} \quad \mathcal{D}(x_1, x_2) = N(\rho x_2, \rho x_1), I$$

- $\alpha = \beta = 1$ and $\gamma = \rho$, thus

$$\rho = \gamma\beta/\alpha$$

- vector field

$$\begin{aligned}\nabla f_y(x) &= x - \mathbf{E}_{z \sim \mathcal{D}(y)}(z) \\ &= \begin{bmatrix} x_1 - \rho y_2 \\ x_2 - \rho y_1 \end{bmatrix}\end{aligned}$$

- equilibrium point: $\bar{x} = (0, 0)$

Numerical illustration

chasing the mean:

$$\underset{x \in \mathbb{R}^2}{\text{minimize}} \quad \underset{z \sim \mathcal{D}(x)}{\mathbf{E}} \|x - z\|^2 \quad \text{where} \quad \mathcal{D}(x_1, x_2) = N(\rho x_2, \rho x_1), I$$

- $\alpha = \beta = 1$ and $\gamma = \rho$, thus

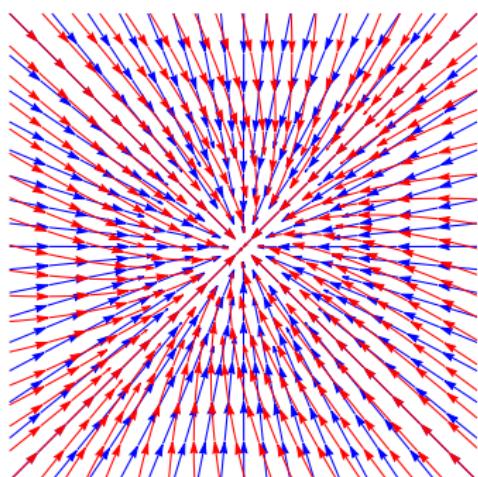
$\nabla f_x(x)$ versus $\nabla f_{\bar{x}}(x)$

$$\rho = \gamma\beta/\alpha$$

- vector field

$$\begin{aligned} \nabla f_y(x) &= x - \mathbf{E}_{z \sim \mathcal{D}(y)}(z) \\ &= \begin{bmatrix} x_1 - \rho y_2 \\ x_2 - \rho y_1 \end{bmatrix} \end{aligned}$$

- equilibrium point: $\bar{x} = (0, 0)$



Numerical illustration

chasing the mean:

$$\underset{x \in \mathbb{R}^2}{\text{minimize}} \quad \underset{z \sim \mathcal{D}(x)}{\mathbf{E}} \|x - z\|^2 \quad \text{where} \quad \mathcal{D}(x_1, x_2) = N(\rho x_2, \rho x_1), I$$

- $\alpha = \beta = 1$ and $\gamma = \rho$, thus

$\nabla f_x(x)$ versus $\nabla f_{\bar{x}}(x)$

$$\rho = \gamma\beta/\alpha$$

- vector field

$$\begin{aligned} \nabla f_y(x) &= x - \mathbf{E}_{z \sim \mathcal{D}(y)}(z) \\ &= \begin{bmatrix} x_1 - \rho y_2 \\ x_2 - \rho y_1 \end{bmatrix} \end{aligned}$$

- equilibrium point: $\bar{x} = (0, 0)$

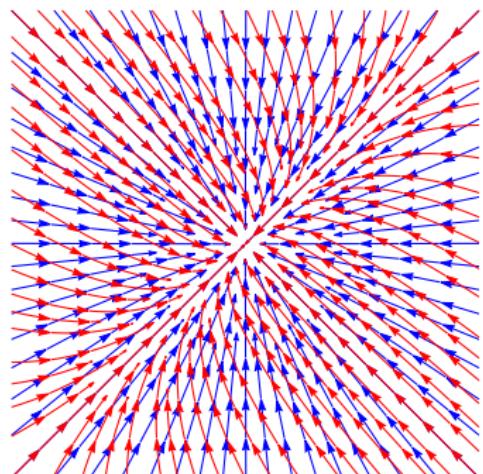


Figure: $\rho = 0.5$

Numerical illustration

chasing the mean:

$$\underset{x \in \mathbb{R}^2}{\text{minimize}} \quad \underset{z \sim \mathcal{D}(x)}{\mathbf{E}} \|x - z\|^2 \quad \text{where} \quad \mathcal{D}(x_1, x_2) = N(\rho x_2, \rho x_1), I$$

- $\alpha = \beta = 1$ and $\gamma = \rho$, thus

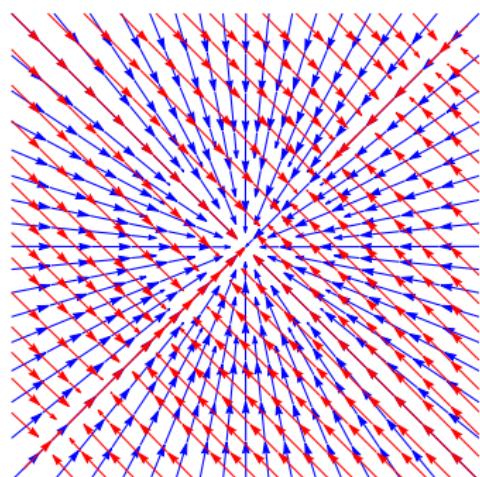
$\nabla f_x(x)$ versus $\nabla f_{\bar{x}}(x)$

$$\rho = \gamma\beta/\alpha$$

- vector field

$$\begin{aligned} \nabla f_y(x) &= x - \mathbf{E}_{z \sim \mathcal{D}(y)}(z) \\ &= \begin{bmatrix} x_1 - \rho y_2 \\ x_2 - \rho y_1 \end{bmatrix} \end{aligned}$$

- equilibrium point: $\bar{x} = (0, 0)$



Numerical illustration

chasing the mean:

$$\underset{x \in \mathbb{R}^2}{\text{minimize}} \quad \underset{z \sim \mathcal{D}(x)}{\mathbf{E}} \|x - z\|^2 \quad \text{where} \quad \mathcal{D}(x_1, x_2) = N(\rho x_2, \rho x_1), I$$

- $\alpha = \beta = 1$ and $\gamma = \rho$, thus

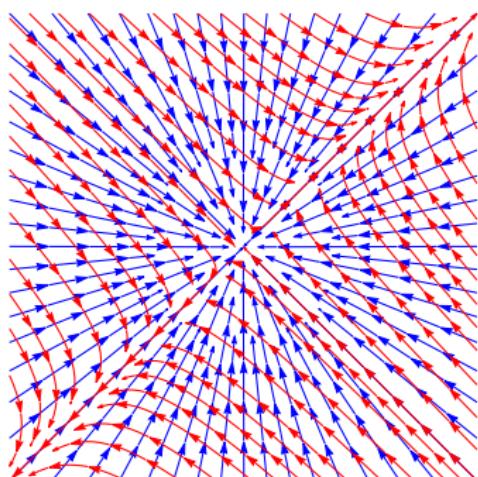
$\nabla f_x(x)$ versus $\nabla f_{\bar{x}}(x)$

$$\rho = \gamma\beta/\alpha$$

- vector field

$$\begin{aligned} \nabla f_y(x) &= x - \mathbf{E}_{z \sim \mathcal{D}(y)}(z) \\ &= \begin{bmatrix} x_1 - \rho y_2 \\ x_2 - \rho y_1 \end{bmatrix} \end{aligned}$$

- equilibrium point: $\bar{x} = (0, 0)$



Empirical study: regularization helps!

- RRM: $x_{t+1} = \operatorname{argmin}_x f_{x_t}(x) + r(x)$
- PPM: $x_{t+1} = \operatorname{argmin}_x f_{x_t}(x) + r(x) + \frac{1}{2\eta} \|x - x_t\|^2$

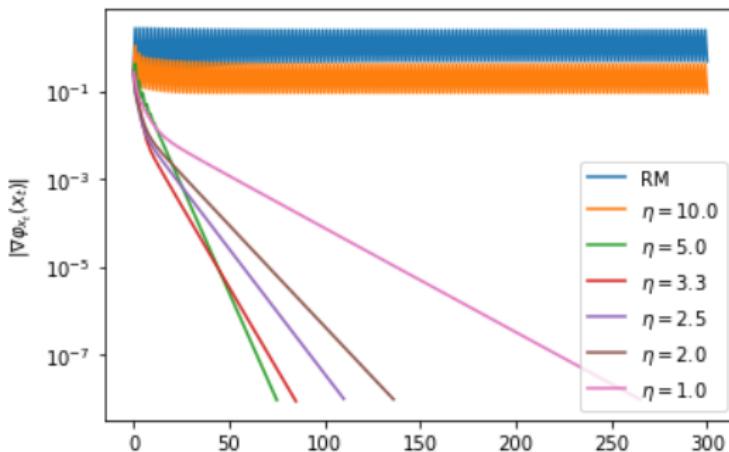


Figure: Strategic classification with $\rho > 1$

Empirical study: regularization helps!

- RRM: $x_{t+1} = \operatorname{argmin}_x f_{x_t}(x) + r(x)$
- PPM: $x_{t+1} = \operatorname{argmin}_x f_{x_t}(x) + r(x) + \frac{1}{2\eta} \|x - x_t\|^2$

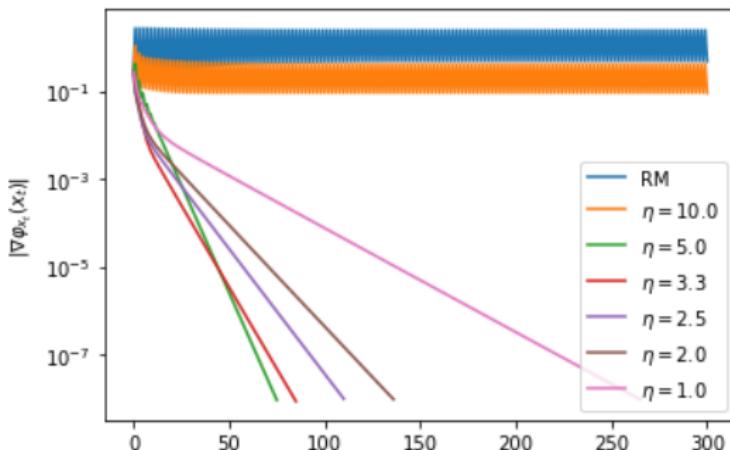


Figure: Strategic classification with $\rho > 1$

(conceptual algorithms, not feasible for practical applications)

Two deviation inequalities

- definitions:

$$f_y(x) := \mathbf{E}_{z \sim \mathcal{D}(y)} \ell(x, z), \quad \mathcal{G}_y(x, x') := f_y(x) - f_y(x')$$

Two deviation inequalities

- definitions:

$$f_y(x) := \mathbf{E}_{z \sim \mathcal{D}(y)} \ell(x, z), \quad \mathcal{G}_y(x, x') := f_y(x) - f_y(x')$$

- **lemma** (gradient deviation): for all $y, y' \in \mathbf{R}^d$ it holds:

$$\sup_{x \in \mathbf{R}^d} \|\nabla f_y(x) - \nabla f_{y'}(x)\| \leq \gamma \beta \cdot \|y - y'\|$$

Two deviation inequalities

- definitions:

$$f_y(x) := \mathbf{E}_{z \sim \mathcal{D}(y)} \ell(x, z), \quad \mathcal{G}_y(x, x') := f_y(x) - f_y(x')$$

- **lemma** (gradient deviation): for all $y, y' \in \mathbf{R}^d$ it holds:

$$\sup_{x \in \mathbf{R}^d} \|\nabla f_y(x) - \nabla f_{y'}(x)\| \leq \gamma \beta \cdot \|y - y'\|$$

implication: $\text{Bias}(x) := \|\nabla f_x(x) - \nabla f_{\bar{x}}(x)\| \leq \gamma \beta \cdot \|x - \bar{x}\|$

Two deviation inequalities

- definitions:

$$f_y(x) := \mathbf{E}_{z \sim \mathcal{D}(y)} \ell(x, z), \quad \mathcal{G}_y(x, x') := f_y(x) - f_y(x')$$

- **lemma** (gradient deviation): for all $y, y' \in \mathbf{R}^d$ it holds:

$$\sup_{x \in \mathbf{R}^d} \|\nabla f_y(x) - \nabla f_{y'}(x)\| \leq \gamma \beta \cdot \|y - y'\|$$

implication: $\text{Bias}(x) := \|\nabla f_x(x) - \nabla f_{\bar{x}}(x)\| \leq \gamma \beta \cdot \|x - \bar{x}\|$

- **lemma** (gap deviation): all $x, x' \in \mathbf{R}^d$ and $y, y' \in \mathbf{R}^d$ satisfy:

$$\mathcal{G}_y(x, x') - \mathcal{G}_{y'}(x, x') \leq \gamma \beta \cdot \|x - x'\| \cdot \|y - y'\|$$

Two deviation inequalities

- definitions:

$$f_y(x) := \mathbf{E}_{z \sim \mathcal{D}(y)} \ell(x, z), \quad \mathcal{G}_y(x, x') := f_y(x) - f_y(x')$$

- **lemma** (gradient deviation): for all $y, y' \in \mathbf{R}^d$ it holds:

$$\sup_{x \in \mathbf{R}^d} \|\nabla f_y(x) - \nabla f_{y'}(x)\| \leq \gamma \beta \cdot \|y - y'\|$$

implication: $\text{Bias}(x) := \|\nabla f_x(x) - \nabla f_{\bar{x}}(x)\| \leq \gamma \beta \cdot \|x - \bar{x}\|$

- **lemma** (gap deviation): all $x, x' \in \mathbf{R}^d$ and $y, y' \in \mathbf{R}^d$ satisfy:

$$\mathcal{G}_y(x, x') - \mathcal{G}_{y'}(x, x') \leq \gamma \beta \cdot \|x - x'\| \cdot \|y - y'\|$$

implication: $\mathcal{G}_x(x, \bar{x}) - \mathcal{G}_{\bar{x}}(x, \bar{x}) \leq \gamma \beta \cdot \|x - \bar{x}\|^2$
(can be offset by strong convexity)

Online convex optimization

- **a repeated game:** for $t = 1, 2, \dots$
 - player chooses $x_t \in \text{dom } r$
 - nature reveals function ℓ_t and player pays $\ell_t(x_t)$

player's goal: minimize the regret

$$R_t := \sum_{i=1}^t (\ell_i(x_i) + r(x_i)) - \min_x \sum_{i=1}^t (\ell_i(x) + r(x))$$

Online convex optimization

- **a repeated game:** for $t = 1, 2, \dots$
 - player chooses $x_t \in \text{dom } r$
 - nature reveals function ℓ_t and player pays $\ell_t(x_t)$

player's goal: minimize the regret

$$R_t := \sum_{i=1}^t (\ell_i(x_i) + r(x_i)) - \min_x \sum_{i=1}^t (\ell_i(x) + r(x))$$

- **algorithms:**
 - online prox-gradient (Duchi-Singer 2009)
 - regularized dual averaging (X 2010)
 - follow-the-regularized-leader (FTRL) (McMahan 2011, ...)
- **guarantees**

$$\left. \begin{array}{l} \ell_t \text{ are } \alpha\text{-strongly convex on } \text{dom } r \\ \ell_t \text{ are } G\text{-Lipschitz on } \text{dom } r \end{array} \right\} \implies R_t = \mathcal{O} \left(\frac{G^2 \log t}{\alpha} \right)$$

Reduction to online convex optimization

- finding **performative equilibrium** is equivalent to

$$\underset{x}{\text{minimize}} \quad \varphi(x) := \underset{z \sim \mathcal{D}(\bar{x})}{\mathbf{E}} [\ell(x, z)] + r(x)$$

Reduction to online convex optimization

- finding **performative equilibrium** is equivalent to

$$\underset{x}{\text{minimize}} \quad \varphi(x) := \underset{z \sim \mathcal{D}(\bar{x})}{\mathbf{E}} [\ell(x, z)] + r(x)$$

- theorem** (Drusvyatskiy-X 2020):

Suppose $\rho \in (0, \frac{1}{2})$. Run an online algorithm where in iteration t , nature draws $z_t \sim \mathcal{D}(x_t)$ and declares $\ell_t(x_t) = \ell(x_t, z_t)$. Then

$$\mathbf{E} \left[\varphi \left(\frac{1}{t} \sum_{i=1}^t x_i \right) - \varphi(\bar{x}) \right] \leq \frac{\mathbf{E}[R_t]}{(1-2\rho)t} = \mathcal{O} \left(\frac{\log t}{(1-2\rho)\alpha t} \right)$$

Reduction to online convex optimization

- finding **performative equilibrium** is equivalent to

$$\underset{x}{\text{minimize}} \quad \varphi(x) := \mathbf{E}_{z \sim \mathcal{D}(\bar{x})} [\ell(x, z)] + r(x)$$

- theorem** (Drusvyatskiy-X 2020):

Suppose $\rho \in (0, \frac{1}{2})$. Run an online algorithm where in iteration t , nature draws $z_t \sim \mathcal{D}(x_t)$ and declares $\ell_t(x_t) = \ell(x_t, z_t)$. Then

$$\mathbf{E} \left[\varphi \left(\frac{1}{t} \sum_{i=1}^t x_i \right) - \varphi(\bar{x}) \right] \leq \frac{\mathbf{E}[R_t]}{(1-2\rho)t} = \mathcal{O} \left(\frac{\log t}{(1-2\rho)\alpha t} \right)$$

- downside:** strong assumptions (bounded domain, Lipschitz loss)

instead, can analyze algorithms directly, assuming **finite-variance**:

$$\mathbf{E}_{z \sim \mathcal{D}(x)} \|\nabla \ell(x, z) - \nabla f_x(x)\|^2 \leq \sigma^2, \quad \forall x$$

Proximal stochastic gradient (SG)

- **algorithm:** sample $z_t \sim \mathcal{D}(x_t)$
$$x_{t+1} = \text{prox}_{\eta r}(x_t - \eta \nabla \ell(x_t, z_t))$$

Proximal stochastic gradient (SG)

- **algorithm:** sample $z_t \sim \mathcal{D}(x_t)$
$$x_{t+1} = \text{prox}_{\eta r}(x_t - \eta \nabla \ell(x_t, z_t))$$
- **theorem** (Drusvyatskiy-X 2020, Mendler-Dünner et al. 2020)
 - If $\rho < 1$, proximal SG finds x with $\|x - \bar{x}\|^2 \leq \varepsilon$ using

$$\mathcal{O} \left(\kappa \cdot \log \left(\frac{\|x_0 - \bar{x}\|^2}{\varepsilon} \right) + \frac{\sigma^2}{(1 - \rho)^2 \alpha^2 \varepsilon} \right) \text{ samples}$$

Proximal stochastic gradient (SG)

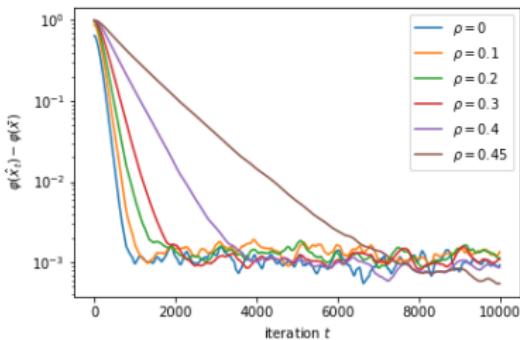
- **algorithm:** sample $z_t \sim \mathcal{D}(x_t)$
$$x_{t+1} = \text{prox}_{\eta r}(x_t - \eta \nabla \ell(x_t, z_t))$$
- **theorem** (Drusvyatskiy-X 2020, Mendler-Dünner et al. 2020)
 - If $\rho < 1$, proximal SG finds x with $\|x - \bar{x}\|^2 \leq \varepsilon$ using
$$\mathcal{O}\left(\kappa \cdot \log\left(\frac{\|x_0 - \bar{x}\|^2}{\varepsilon}\right) + \frac{\sigma^2}{(1 - \rho)^2 \alpha^2 \varepsilon}\right) \text{ samples}$$
 - If $\rho < \frac{1}{2}$, proximal SG finds x with $\mathbf{E}[\varphi(x) - \varphi(\bar{x})] \leq \varepsilon$ using
$$\mathcal{O}\left(\kappa \cdot \log\left(\frac{\varphi(x_0) - \varphi(\bar{x})}{\varepsilon}\right) + \frac{\sigma^2}{(1 - 2\rho)\alpha\varepsilon}\right) \text{ samples}$$

Proximal stochastic gradient (SG)

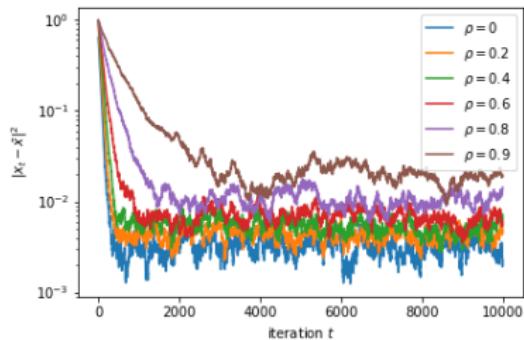
- **algorithm:** sample $z_t \sim \mathcal{D}(x_t)$
$$x_{t+1} = \text{prox}_{\eta r}(x_t - \eta \nabla \ell(x_t, z_t))$$
- **theorem** (Drusvyatskiy-X 2020, Mendler-Dünner et al. 2020)
 - If $\rho < 1$, proximal SG finds x with $\|x - \bar{x}\|^2 \leq \varepsilon$ using
$$\mathcal{O}\left(\kappa \cdot \log\left(\frac{\|x_0 - \bar{x}\|^2}{\varepsilon}\right) + \frac{\sigma^2}{(1 - \rho)^2 \alpha^2 \varepsilon}\right) \text{ samples}$$
 - If $\rho < \frac{1}{2}$, proximal SG finds x with $\mathbf{E}[\varphi(x) - \varphi(\bar{x})] \leq \varepsilon$ using
$$\mathcal{O}\left(\kappa \cdot \log\left(\frac{\varphi(x_0) - \varphi(\bar{x})}{\varepsilon}\right) + \frac{\sigma^2}{(1 - 2\rho)\alpha\varepsilon}\right) \text{ samples}$$
- **remark:** reduces to classical rate if $\rho = 0$ (e.g., Lan 2010)

Numerical experiments of SG method

chasing the mean: SG with constant step size $\eta = 0.01$



(a) function value gap of \hat{x}_t



(b) squared distance to \bar{x}

- $\varphi(\hat{x}_t) - \varphi(\bar{x})$ decreases linearly to noise level controlled by η
- linear rate degrades as ρ tends to $1/2$
- $\|\hat{x}_t - \bar{x}\|^2$ decreases linearly to noise level depending on η and ρ

Proximal accelerated stochastic gradient (ASG)

- **algorithm:** (adapted from [Kulunchakov-Mairal 2019](#))

sample $z_t \sim \mathcal{D}(y_{t-1})$ and set $g_t = \nabla \ell(y_{t-1}, z_t)$

$$x_t = \text{prox}_{\eta_t r}(y_{t-1} - \eta g_t)$$

$$y_t = x_t + \frac{1 - \sqrt{\eta \alpha (1 - 2\rho)}}{1 + \sqrt{\eta \alpha (1 - 2\rho)}} (x_t - x_{t-1})$$

Proximal accelerated stochastic gradient (ASG)

- **algorithm:** (adapted from [Kulunchakov-Mairal 2019](#))

sample $z_t \sim \mathcal{D}(y_{t-1})$ and set $g_t = \nabla \ell(y_{t-1}, z_t)$

$$x_t = \text{prox}_{\eta_t r}(y_{t-1} - \eta g_t)$$

$$y_t = x_t + \frac{1 - \sqrt{\eta \alpha (1 - 2\rho)}}{1 + \sqrt{\eta \alpha (1 - 2\rho)}} (x_t - x_{t-1})$$

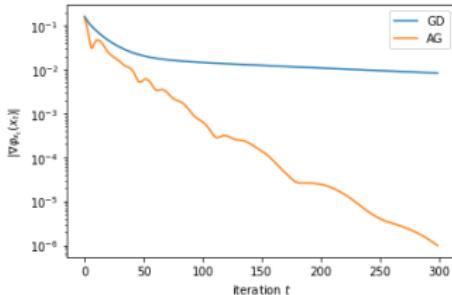
- **theorem** ([Drusvyatskiy-X 2020](#)): If $\rho \lesssim \kappa^{-1/4}$, proximal ASG finds x satisfying $\mathbf{E}[\varphi(x) - \varphi(\bar{x})] \leq \varepsilon$ using

$$\mathcal{O} \left(\sqrt{\kappa} \cdot \log \left(\frac{\varphi(x_0) - \varphi(\bar{x})}{\varepsilon} \right) + \frac{\sigma^2}{\alpha \varepsilon} \right) \quad \text{samples}$$

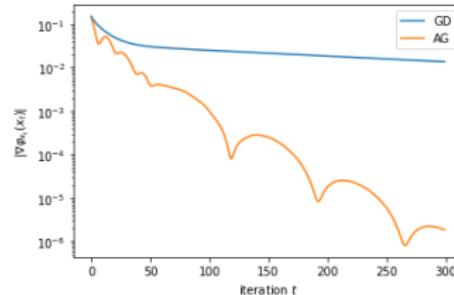
- $\rho \lesssim \kappa^{-1/4}$ looks suboptimal; can it be improved?
- somewhat surprising to have acceleration for any $\rho > 0$

- **proof:** technical, using variant of stochastic estimate sequences

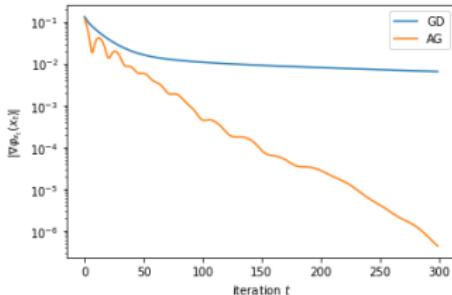
Acceleration works mysteriously well!



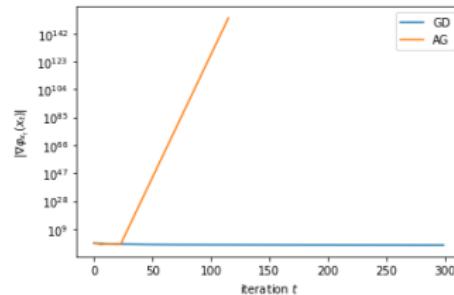
(a) $\gamma = 0.$



(b) $\gamma = 5.$



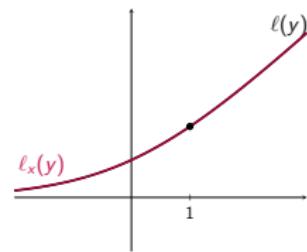
(c) $\gamma = 100.$



(d) $\gamma = 250.$

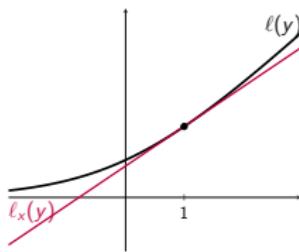
experiments with a strategic classification problem ($\sigma = 0$)

Model-based algorithms



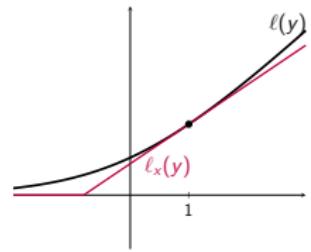
prox-point

$$\ell_x(y) = \ell(y)$$



gradient

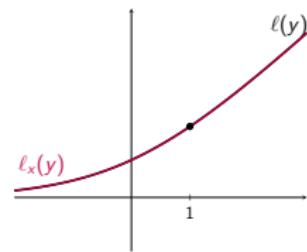
$$\ell_x(y) = \ell(x) + \langle \nabla \ell(x), y - x \rangle$$



clipped gradient

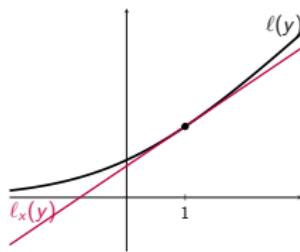
$$\ell_x(y) = (\ell(x) + \langle \nabla \ell(x), y - x \rangle)^+$$

Model-based algorithms



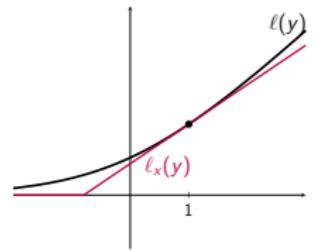
prox-point

$$\ell_x(y) = \ell(y)$$



gradient

$$\ell_x(y) = \ell(x) + \langle \nabla \ell(x), y - x \rangle$$



clipped gradient

$$\ell_x(y) = (\ell(x) + \langle \nabla \ell(x), y - x \rangle)^+$$

algorithm template:

sample $z_t \sim \mathcal{D}(x_t)$

$$x_{t+1} = \operatorname{argmin}_y \left\{ \ell_{x_t}(y, z_t) + r(y) + \frac{1}{2\eta} \|y - x_t\|^2 \right\}$$

(clipped gradient model introduced in [Asi-Duchi 2019](#))

Model-based algorithms

Assumptions: there exist $\alpha_1, \alpha_2 \geq 0$ such that

- **convexity**

$$\ell_x(\cdot, z) \text{ is convex,} \quad \ell_x(\cdot, z) + r \text{ is } \alpha_1\text{-strongly convex}$$

- **bias/variance**

$$\mathop{\mathbf{E}}_z[\nabla \ell_x(x, z)] = \nabla f_x(x), \quad \mathop{\mathbf{E}}_z \|\nabla \ell_x(x, z) - \nabla f_x(x)\|^2 \leq \sigma^2$$

- **accuracy**

$$\mathop{\mathbf{E}}_z[\ell_x(x, z)] = f_x(x), \quad \mathop{\mathbf{E}}_z[\ell_x(y, z)] + \frac{\alpha_2}{2} \|x - y\|^2 \leq f_x(y)$$

Model-based algorithms

Assumptions: there exist $\alpha_1, \alpha_2 \geq 0$ such that

- **convexity**

$$\ell_x(\cdot, z) \text{ is convex, } \quad \ell_x(\cdot, z) + r \text{ is } \alpha_1\text{-strongly convex}$$

- **bias/variance**

$$\mathbf{E}_z[\nabla \ell_x(x, z)] = \nabla f_x(x), \quad \mathbf{E}_z \|\nabla \ell_x(x, z) - \nabla f_x(x)\|^2 \leq \sigma^2$$

- **accuracy**

$$\mathbf{E}_z[\ell_x(x, z)] = f_x(x), \quad \mathbf{E}_z[\ell_x(y, z)] + \frac{\alpha_2}{2} \|x - y\|^2 \leq f_x(y)$$

remark:

- similar assumptions in (Davis-Drusvyatskiy '19, Asi-Duchi '19)
- tighter models \Rightarrow better algorithms (Ryu-Boyd '14, Asi-Duchi '19)

Model-based algorithms

- **algorithm:** sample $z_t \sim \mathcal{D}(x_t)$

$$x_{t+1} = \operatorname{argmin}_y \left\{ \ell_{x_t}(y, z_t) + r(y) + \frac{1}{2\eta} \|y - x_t\|^2 \right\}$$

- **theorem** (Drusvyatskiy-X '20)

- if $\frac{\gamma\beta}{\alpha_1 + \alpha_2} < \frac{1}{2}$, algorithm finds x with $\mathbf{E}[\varphi(x) - \varphi(\bar{x})] \leq \varepsilon$ using

$$\mathcal{O} \left(\frac{L}{\alpha_1 + \alpha_2} \cdot \log \left(\frac{\varphi(x_0) - \varphi(\bar{x})}{\varepsilon} \right) + \frac{\sigma^2}{(\alpha_1 + \alpha_2)\varepsilon} \right) \text{ samples}$$

Model-based algorithms

- **algorithm:** sample $z_t \sim \mathcal{D}(x_t)$

$$x_{t+1} = \operatorname{argmin}_y \left\{ \ell_{x_t}(y, z_t) + r(y) + \frac{1}{2\eta} \|y - x_t\|^2 \right\}$$

- **theorem** (Drusvyatskiy-X '20)

- if $\frac{\gamma\beta}{\alpha_1 + \alpha_2} < \frac{1}{2}$, algorithm finds x with $\mathbf{E}[\varphi(x) - \varphi(\bar{x})] \leq \varepsilon$ using

$$\mathcal{O} \left(\frac{L}{\alpha_1 + \alpha_2} \cdot \log \left(\frac{\varphi(x_0) - \varphi(\bar{x})}{\varepsilon} \right) + \frac{\sigma^2}{(\alpha_1 + \alpha_2)\varepsilon} \right) \text{ samples}$$

- if $\frac{\gamma\beta}{\alpha_1 + \alpha_2} < 1$, algorithm finds x with $\|x - \bar{x}\|^2 \leq \varepsilon$ using

$$\mathcal{O} \left(\frac{L}{\alpha_1 + \alpha_2} \cdot \log \left(\frac{\|x_0 - \bar{x}\|^2}{\varepsilon} \right) + \frac{\sigma^2}{(\alpha_1 + \alpha_2)^2 \varepsilon} \right) \text{ samples}$$

Model-based algorithms

- **algorithm:** sample $z_t \sim \mathcal{D}(x_t)$

$$x_{t+1} = \operatorname{argmin}_y \left\{ \ell_{x_t}(y, z_t) + r(y) + \frac{1}{2\eta} \|y - x_t\|^2 \right\}$$

- **theorem** (Drusvyatskiy-X '20)

- if $\frac{\gamma\beta}{\alpha_1 + \alpha_2} < \frac{1}{2}$, algorithm finds x with $\mathbf{E}[\varphi(x) - \varphi(\bar{x})] \leq \varepsilon$ using

$$\mathcal{O} \left(\frac{L}{\alpha_1 + \alpha_2} \cdot \log \left(\frac{\varphi(x_0) - \varphi(\bar{x})}{\varepsilon} \right) + \frac{\sigma^2}{(\alpha_1 + \alpha_2)\varepsilon} \right) \text{ samples}$$

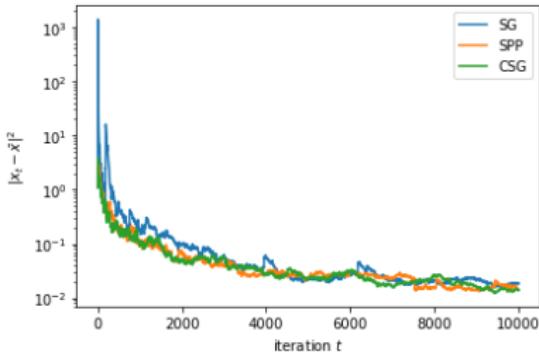
- if $\frac{\gamma\beta}{\alpha_1 + \alpha_2} < 1$, algorithm finds x with $\|x - \bar{x}\|^2 \leq \varepsilon$ using

$$\mathcal{O} \left(\frac{L}{\alpha_1 + \alpha_2} \cdot \log \left(\frac{\|x_0 - \bar{x}\|^2}{\varepsilon} \right) + \frac{\sigma^2}{(\alpha_1 + \alpha_2)^2 \varepsilon} \right) \text{ samples}$$

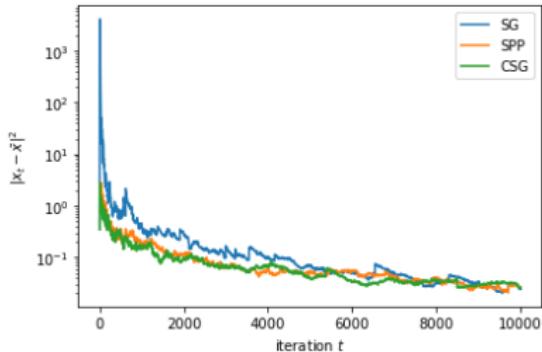
- rates for **stochastic PPM** and **clipped gradient** follow immediately

Numerical experiments of model-based algorithms

example of strategic classification, step size $\eta_t = \frac{2}{\alpha(t+1)}$



(a) $\gamma = 0.1$.



(b) $\gamma = 0.25$.

- all three methods perform similarly asymptotically
- initial stage:
 - SG sensitive to relatively large initial step sizes
 - stochastic PPM and clipped gradient more preferable (investigated in [Asi-Duchi '19](#) for fixed distribution)

Inexact repeated minimization (IRM)

deployment of decision rule much more expensive than sampling

Inexact repeated minimization (IRM)

deployment of decision rule much more expensive than sampling

- state-wise algorithm

```
for  $s = 1, 2, \dots, S$  do
     $u_s = x_{s-1}, T$ 
    for  $t = 1, 2, \dots, T$  do
        sample  $z_{s,t} \sim \mathcal{D}(u_s)$ 
         $x_{s,t+1} = \operatorname{argmin}_y \left\{ \ell_{x_{s,t}}(y, z_{s,t}) + r(y) + \frac{1}{2\eta} \|y - x_{s,t}\|^2 \right\}$ 
```

Inexact repeated minimization (IRM)

deployment of decision rule much more expensive than sampling

- state-wise algorithm

```
for  $s = 1, 2, \dots, S$  do
     $u_s = x_{s-1, T}$ 
    for  $t = 1, 2, \dots, T$  do
        sample  $z_{s,t} \sim \mathcal{D}(u_s)$ 
         $x_{s,t+1} = \operatorname{argmin}_y \left\{ \ell_{x_{s,t}}(y, z_{s,t}) + r(y) + \frac{1}{2\eta} \|y - x_{s,t}\|^2 \right\}$ 
```

- Mendler-Dünner, Perdomo, Zrnic, Hardt '20: established “deployments/samples” trade-off for IRM with SG method
- **theorem** (Drusvyatskiy-X '20)
If $\rho < 1$, can implement IRM with all previous algorithms with same sample efficiency and only $\frac{1}{1-\rho} \log(1/\varepsilon)$ deployments.

Summary

- stochastic optimization with decision-dependent distributions

$$\underset{x}{\text{minimize}} \quad \mathbf{E}_{z \sim \mathcal{D}(x)} [\ell(x, z)]$$

tractable solution concept: **equilibrium** (Perdomo et al. '20)

$$\bar{x} = \underset{x}{\text{argmin}} \quad \mathbf{E}_{z \sim \mathcal{D}(\bar{x})} [f(x, z)] + r(x)$$

Summary

- stochastic optimization with decision-dependent distributions

$$\underset{x}{\text{minimize}} \quad \mathbf{E}_{z \sim \mathcal{D}(x)} [\ell(x, z)]$$

tractable solution concept: **equilibrium** (Perdomo et al. '20)

$$\bar{x} = \underset{x}{\text{argmin}} \quad \mathbf{E}_{z \sim \mathcal{D}(\bar{x})} [f(x, z)] + r(x)$$

- Meta Theorem:** Algorithms that sample from $\mathcal{D}(x_t)$ can be viewed as same algorithms applied to the **static problem**

$$\underset{x}{\text{minimize}} \quad \mathbf{E}_{z \sim \mathcal{D}(\bar{x})} [f(x, z)] + r(x)$$

with “bias,” and the “bias” $\rightarrow 0$ linearly as $x_t \rightarrow \bar{x}$.

References

details in the paper:

- ▶ "Stochastic optimization with decision-dependent distributions"
Drusvyatskiy-X (2020), arxiv.org/abs/2011.11173

main references:

- ▶ "Performative prediction"
Perdomo, Zrnic, Mendler-Dünner, Hardt (ICML 2020)
- ▶ "Stochastic optimization for performative prediction"
Mendler-Dünner, Perdomo, Zrnic, Hardt (NeurIPS 2020)
- ▶ "Strategic classification"
Hardt, Megiddo, Papadimitriou, Wootters (ACM ITCS '16)

References

details in the paper:

- ▶ "Stochastic optimization with decision-dependent distributions"
Drusvyatskiy-X (2020), arxiv.org/abs/2011.11173

main references:

- ▶ "Performative prediction"
Perdomo, Zrnic, Mendler-Dünner, Hardt (ICML 2020)
- ▶ "Stochastic optimization for performative prediction"
Mendler-Dünner, Perdomo, Zrnic, Hardt (NeurIPS 2020)
- ▶ "Strategic classification"
Hardt, Megiddo, Papadimitriou, Wootters (ACM ITCS '16)

Thank you!