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Classical stochastic optimization

miniXmize zEP [0(x,z)]

stochastic approximation (Robbins & Monro 1951)
Xt+1 = X¢ — ntvg(xta Zt)
dominant algorithmic framework in modern deep learning

many variants

SGD with momentum, Nesterov acceleration
AdaGrad, RMSProp, Adam, ...

— dual averaging

— clipped stochastic gradient



Classical stochastic optimization

miniXmize zEP [0(x,z)]

® stochastic approximation (Robbins & Monro 1951)
Xt+1 = X¢ — ntvg(xta Zt)
dominant algorithmic framework in modern deep learning

® many variants

— SGD with momentum, Nesterov acceleration
— AdaGrad, RMSProp, Adam, ...

— dual averaging

— clipped stochastic gradient

® convergence guarantees require P being fixed (z; ~ P for all t)
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Decision-dependent distributional shift

minimize  E [{(x, z)]

X z~D(x)

many applications in practice

e active interaction (gaming by manipulating features)
— spam filtering
— fraud detection
— detection of abusive content (fake news, hate speech, ...)

® passive feedback

— banks use classifier to approve load applications, impacting
credit score of applications for downstream tasks



Decision-dependent distributional shift

minimize  E [{(x, z)]

X z~D(x)

many applications in practice

e active interaction (gaming by manipulating features)
— spam filtering
— fraud detection
— detection of abusive content (fake news, hate speech, ...)

® passive feedback
— banks use classifier to approve load applications, impacting

credit score of applications for downstream tasks

called performative prediction in machine learning context
(Perdomo, Zrnic, Mendler-Diinner & Hardt 2020)



Strategic classification
(Hardt, Megiddo, Papadimitriou & Wootters 2016)

two-player online game between
® population of agents, each with feature a € R™ and label b € R
® an institution that deploys classifier hy, predicts hy(a) ~ b



Strategic classification
(Hardt, Megiddo, Papadimitriou & Wootters 2016)

two-player online game between
® population of agents, each with feature a € R™ and label b € R
® an institution that deploys classifier hy, predicts hy(a) = b

during each round of the game:
® agents adapt features to increase chance of positive classification

4(hy, a) := argmax{u(hy,d) — c(a,d)}
a/

— u(hy, ) is utility function of agent
— c¢(a,-) is cost of altering features
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during each round of the game:
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— can only use random samples of agents
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X



Strategic classification
(Hardt, Megiddo, Papadimitriou & Wootters 2016)

two-player online game between
® population of agents, each with feature a € R™ and label b € R
® an institution that deploys classifier hy, predicts hy(a) = b

during each round of the game:
® agents adapt features to increase chance of positive classification

a . / /
a(hy,a) := arg m;]x{u(hx7 a)—c(a,d)}
— u(hy, ) is utility function of agent
— c¢(a,-) is cost of altering features
® institution can adjust x to minimize classification error

E  [0(h(3),b
oy En [B(2). )

— can only use random samples of agents

minimize
X

(in practice, agents unlikely play best responses, but (4, b) ~ D(x))



Optimization model

stochastic optimization with decision-dependent distributions

minimize  E |l(x,z)| + r(x

mize B [tx.2)] + (4

® D(x) decision/state-dependent, accessible by sampling
® /(-,z) is a convex loss function

® r(-) is a convex, structure-inducing regularizer



Optimization model
stochastic optimization with decision-dependent distributions

minimize  E |l(x,z)| + r(x
mize E_[fx.2)] +r(x)
® D(x) decision/state-dependent, accessible by sampling

® /(-,z) is a convex loss function
® r(-) is a convex, structure-inducing regularizer

hard to solve in general: nonsmooth, nonconvex

two paths forward:

1. impose structure on D(-) and solve
(Ahmed'00, Dupacova'06, Goel-Grossman'06, Hassani et al.’20, ...

2. settle for an alternative, efficiently computable solution concept
(Perdomo, Zrnic, Mendler-Diinner & Hardt 2020)
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x z~D(x

“no incentive to change X based only on response D(X)"
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Equilibrium
notation:

f,(x) = ZNE(y) U(x, z), Vi, (x) = ZNE(y) Vi(x,z)

definition of equilibrium (Perdomo et al '20):

x = argmin fz(x) + r(x)
X
“no incentive to change X based only on response D(X)"

algorithmically: these are fixed points of the map

S(y) := argmin f,(x) + r(x)

X

suggests a fixed-point algorithm (repeated minimization)



Performative prediction
Perdomo, Zrnic, Mendler-Diinner & Hardt (ICML 2020, NeurlPS 2020):

e proposed this framework (performative stable solutions)

® established existence of equilibria
® showed convergence of following algorithms:
— repeated risk minimization (conceptual)
Xey1 = arg}ryin{fxt(x) +r(x)}
— projected gradient descent (conceptual)
Xe+1 = prox,, (xe — NV, (xt))
— projected stochastic gradient (practical)
sample z; ~ D(x)

Xt41 = Prox, (xe — nVe(xt, zt))



Our contributions
® goal: find equilibrium

x =argmin  E [f(x,2)] + r(x)

X ZND()_(



Our contributions
® goal: find equilibrium

X = argmin E )[f(x, z)] + r(x)

X ZND()_(

¢ Meta Theorem: Algorithms that sample from D(x;) can be
viewed as same algorithms applied to the static problem

minimize E |f(x,z)| + r(x
mize B [f(x.2)] + (4

with “bias,” and the "bias”— 0 linearly as x; — X.



Our contributions
® goal: find equilibrium

x =argmin  E [f(x,2)] + r(x)
X ZND()_()
¢ Meta Theorem: Algorithms that sample from D(x;) can be
viewed as same algorithms applied to the static problem

minimize E |f(x,z)| + r(x
mize B [f(x.2)] + (4

with “bias,” and the "bias”— 0 linearly as x; — X.

® sharp convergence guarantees for many popular algorithms:
— proximal point
— stochastic gradient
— clipped stochastic gradient
— dual averaging
and their accelerated and proximal variants



Outline of rest of talk

notation and assumptions

two deviation inequalities

reduction to online convex optimization
(accelerated) stochastic gradient method

model-based algorithms



Notation and assumptions
® strong convexity: loss /(-, z) is a-strongly convex:
Ux.2) = Uy, 2) + (VHy. 2).x = y) + S 1x = I
® smoothness: /(-,-) satisfies
IVl(x,2) = V(X' 2)| < L-[Ix = X|
IVe(x, z) = Vix, Z) | < B+ [z = 2|

e sensitivity of D(-) in Wasserstein-1 distance

Wi (D(x), D(y)) < llx = yll
conditioning measures:

L
K= — and p:ﬁ
« @



Interesting regime is p € (0, 1)
® repeated risk minimization (RRM)
Xer1 = argmin i, (x) + r(x)

theorem (Perdomo et al. 2020):

— if p < 1, then RRM converges to X at linear rate p
— if p > 1, then RRM may diverge

10



Interesting regime is p € (0, 1)
® repeated risk minimization (RRM)
Xer1 = argmin i, (x) + r(x)

theorem (Perdomo et al. 2020):

— if p < 1, then RRM converges to X at linear rate p
— if p > 1, then RRM may diverge

e proximal point method (PPM)
. 1
Xer1 = argmin i, (x) + r(x) + %Hx — x¢||?

theorem (Drusvyatskiy-X 2020):
If p <1, then PPM converges to X at linear rate 1 —

1—p

1+(an)~t
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Interesting regime is p € (0, 1)
® repeated risk minimization (RRM)
Xer1 = argmin i, (x) + r(x)

theorem (Perdomo et al. 2020):

— if p < 1, then RRM converges to X at linear rate p
— if p > 1, then RRM may diverge

e proximal point method (PPM)
. 1
Xer1 = argmin i, (x) + r(x) + %Hx — x¢||?

theorem (Drusvyatskiy-X 2020):
If p <1, then PPM converges to X at linear rate 1 —

empirically: PPM more “distributionally stable”

1—p

1+(an)~t

10



Numerical illustration

chasing the mean:

minimize
x€R? zrv ’D(x

|x — z||> where D(x1,x) =

N(PX27PX1)7 I)

11



Numerical illustration

chasing the mean:

minimize |x — z||> where D(x1,x) =

x€ER? zrv 'D(x
e o= =1and~vy = p, thus
p=B/c
® vector field

Vi, (x) = x — E;op(y)(2)
_ |:X1 - P}’z]
X2 — py1

® equilibrium point: x = (0,0)

N(pxz, px1), 1)
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Numerical illustration

chasing the mean:

minimize  E |x —z||> where D(x1,x) = N(px2, px1), 1)
x€R? z~D(x)

® a=p=1and vy =p, thus (x) versus Vfz(x)

\

VE(
W

S

_a—pye ==
= |:X2_py1:| :://///:Z ¥
® equilibrium point: X = (0,0) //%/ |

iz

p=B/a

® vector field

Vi, (x) = x = Ezop(y)(2)

—=

\

\i

\W%

N

Figure: p = 0.25
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Numerical illustration

chasing the mean:

minimize E : |x — z||> where D(x1,x) = N(px2, px1), 1)

x€R? z~D(x
e o= =1and~vy = p, thus
p =B/
® vector field

Vi, (x) = x — EZND(y)(Z)
_ [Xl - P)Q}
X2 — py1

® equilibrium point: x = (0,0)

Vi (x) versus Vifz(x)

ah

Figure: p = 0.5
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Numerical illustration

chasing the mean:
minimize  E |x —z||> where D(x1,x) = N(px2, px1), 1)
x€ER? z~D(x)
* a=f=1andy=p, thus Vi (x) versus Viz(x)
p =B/

® vector field

Vi, (x) = x — EZND(y)(Z)
_ [Xl - P)Q}
X2 — py1

® equilibrium point: x = (0,0)

Figure: p = 0.99
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Numerical illustration

chasing the mean:
minimize  E |x —z||> where D(x1,x) = N(px2, px1), 1)
x€ER? z~D(x)
* o=0(F=1and v = p, thus VfX(X) versus V ;(X)
p =B/

® vector field

Vi, (x) = x — EZND(y)(Z)
_ [Xl - P)Q}
X2 — py1

® equilibrium point: x = (0,0)

Figure: p = 1.25
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Empirical study: regularization helps!

® RRM: x¢41
® PPM: xt11

[T, ()]

= argmin, f,(x) + r(x)
= argmin, f,(x)+ r(x) + %”X —xe|?
10—1_ .................
] RM
n=10.0
— n=50
o = n=33
— n=25
o — n=20
n=10
0 0 W0 150 w0 B0 300

Figure: Strategic classification with p > 1

12



Empirical study: regularization helps!
® RRM: x¢11 = argminy fy,(x) + r(x)

® PPM: x¢y1 = argmin, f,(x) + r(x) + %Hx — x|

107!

1073 1

[, ()]

1072 4

1077 1

T T T T T T T
0 50 100 150 200 250 300

Figure: Strategic classification with p > 1

(conceptual algorithms, not feasible for practical applications)

12



Two deviation inequalities

e definitions:

fy(x):= E ) Ux,2),  Gy(x,x) = f(x) = f,(x)

z~D(



Two deviation inequalities

e definitions:

B9= E 2. Gxx)= k00—,

e lemma (gradient deviation): for all y,y’ € RY it holds:

sup ||V, (x) = VE(x)| <8 - [ly = |l

xER4

(x)
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Two deviation inequalities
® definitions:

B0=_ E 2. Glx)i=h0) ()

e lemma (gradient deviation): for all y,y’ € RY it holds:

sup ||V, (x) = VE () <8 [ly = ¥l

xER4

implication: Bias(x) := ||Vf(x) — V&(X)|| <8 - ||x — X||

* lemma (gap deviation): all x,x’ € RY and y,y’ € R? satisfy:

Gy (x,x') = Gy (6, x") < 4B [Ix =X - [y = V|
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Two deviation inequalities

e definitions:

B0=_ E 2. Glx)i=h0) ()

e lemma (gradient deviation): for all y,y’ € RY it holds:

sup ||V, (x) = VE () <8 [ly = ¥l

xER4

implication: Bias(x) := ||Vf(x) — V&(X)|| <8 - ||x — X||

* lemma (gap deviation): all x,x’ € RY and y,y’ € R? satisfy:

Gy (x,x') = Gy (6, x") < 4B [Ix =X - [y = V|

implication: Gy (x,X) — Gz(x,X) <8 ||x — X||?

(can be offset by strong convexity)

13



Online convex optimization

® a repeated game: for t = 1,2,
— player chooses x; € dom r
— nature reveals function ¢; and player pays £+(x)
player’s goal: minimize the regret
t

Re:=> (i(x) + r(x)) — min D (li(x) + r(x))
i=1

i=1

14



Online convex optimization

® a repeated game: for t =1,2 ...
— player chooses x; € dom r
— nature reveals function ¢; and player pays £+(x)
player’s goal: minimize the regret
t t
Re:=> (i(x) + r(x)) — min D (li(x) + r(x))
i=1 i=1
¢ algorithms:
— online prox-gradient (Duchi-Singer 2009)
— regularized dual averaging (X 2010)
— follow-the-regularized-leader (FTRL) (McMahan 2011, ...)

® guarantees

£; are a-strongly convex on dom r G2%logt
. ) — Rt - O
£; are G-Lipschitz on dom r «

14



Reduction to online convex optimization

¢ finding performative equilibrium is equivalent to

miniXmize o(x) = ZN,E()_()[E(X’ z)] + r(x)

15



Reduction to online convex optimization
¢ finding performative equilibrium is equivalent to
minimize o(x) = Zwllg()_()[ﬂ(x7 z)] + r(x)
¢ theorem (Drusvyatskiy-X 2020):

Suppose p € (0, %) Run an online algorithm where in iteration t,
nature draws z; ~ D(x;) and declares {¢(x;) = ¢(x¢, z:). Then

N - ER:] log t
E[@ (f;X’) _¢(X)] = @-20t O<(1_2p)m)
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Reduction to online convex optimization
¢ finding performative equilibrium is equivalent to

miniXmize o(x) = Zwllg()_()[ﬂ(x7 z)] + r(x)

¢ theorem (Drusvyatskiy-X 2020):
Suppose p € (0, %) Run an online algorithm where in iteration t,
nature draws z; ~ D(x;) and declares {¢(x;) = ¢(x¢, z:). Then

N - E[R:] . log t
Elw (f;X’) _W)l = @-20t O<(1_2p)at)

¢ downside: strong assumptions (bounded domain, Lipschitz loss)

instead, can analyze algorithms directly, assuming finite-variance:

g( : IVe(x,z) — fo(x)H2 < o2, Vx

15



Proximal stochastic gradient (SG)

e algorithm: sample z¢ ~ D(x¢)

Xt+1 = Prox,, (xe — nVE(xt, z¢))

16



Proximal stochastic gradient (SG)
e algorithm: sample z¢ ~ D(x¢)
Xt+1 = Prox,, (xe — nVE(xt, z¢))
¢ theorem (Drusvyatskiy-X 2020, Mendler-Diinner et al. 2020)

— If p < 1, proximal SG finds x with ||x — %||> < & using

10 — %I o?
O </@ -log < 5 + (1= p)Pae samples

16



Proximal stochastic gradient (SG)
e algorithm: sample z¢ ~ D(x¢)
Xt+1 = Prox,, (xe — nVE(xt, z¢))
¢ theorem (Drusvyatskiy-X 2020, Mendler-Diinner et al. 2020)

— If p < 1, proximal SG finds x with ||x — %||> < & using

10 — %I o?
O </@ -log < 5 + (1= p)Pae samples

— If p < 3, proximal SG finds x with E[p(x) — ¢(X)] < € using

O (/4} - log (QO(XO) E_ cp()?)) + o ) samples

(1—-2p)ae

16



Proximal stochastic gradient (SG)
e algorithm: sample z¢ ~ D(x¢)
Xt+1 = Prox,, (xe — nVE(xt, z¢))
¢ theorem (Drusvyatskiy-X 2020, Mendler-Diinner et al. 2020)

— If p < 1, proximal SG finds x with ||x — %||> < & using

10 — %I o?
O </@ -log < 5 + (1= p)Pae samples

— If p < 3, proximal SG finds x with E[p(x) — ¢(X)] < € using

(so(Xo)—cp(?)) L

(1—-2p)ae

O (/43 -log ) samples

® remark: reduces to classical rate if p =0 (e.g., Lan 2010)

16



Numerical experiments of SG method

chasing the mean: SG with constant step size n = 0.01

10

107

=
w 10

LEAR Tt
Jpee = X

102

2 2000 4000 6000 B00 10000 5 2000 4000 5000 B000 10000
iteration t iteration t

(a) function value gap of %; (b) squared distance to X

® (%) — p(X) decreases linearly to noise level controlled by 7
® linear rate degrades as p tends to 1/2

® |[x; — X||? decreases linearly to noise level depending on 7 and p

17



Proximal accelerated stochastic gradient (ASG)

e algorithm: (adapted from Kulunchakov-Mairal 2019)

sample z; ~ D(y;—1) and set gr = VI(y;—1,2:)
Xt = prox, (yt—1 — ngt)

—y/ne(1-2p)

1
Yr = Xe + T /re(i2p) (xt — x¢—1)

18



Proximal accelerated stochastic gradient (ASG)

e algorithm: (adapted from Kulunchakov-Mairal 2019)
sample z; ~ D(y;—1) and set gr = VI(y;—1,2:)
Xp = proxntr(ytfl — 18t)

770‘(1 2p) ( Xt—l)

Ye =Xt + 1++/na(1-2p)

e theorem (Drusvyatskiy-X 2020): If p < k~1/*, proximal ASG
finds x satisfying E[p(x) — ¢(X)] < € using

V- log [ LX) — A +‘L2 samples
O( (90( )E 90(_)) )

ag

— p < k7% looks suboptimal; can it be improved?
— somewhat surprising to have acceleration for any p > 0

® proof: technical, using variant of stochastic estimate sequences
18



[V bxe)|

19, (x|

Acceleration works mysteriously well!

— @
P\ "%
~
N
N
~
~
[ 50 100 150 200 =0 300

teration ¢

[ 50 100 150 200 %0 300
eration ¢

(c) v = 100.

[T )|

7 (xe)]

hS
“
\\
\/ N
Y
\
o 50 100 150 200 250 300
iteration t
/ — GD
/ -
/
/
/
/
/
/
0 50 100 150 200 0 300
teration t

(d) v = 250.

experiments with a strategic classification problem (o = 0)

19



Model-based algorithms

oy, «y, Uy
L(y) Cx(y)
‘ 1 W ‘ 1 ‘ 1
prox—point gradient clipped gradient
be(y) = y) Ce(y) = £(x) +(VUx),y = x)  Luly) = (U(x) + (VU(x),y —x))*

20



Model-based algorithms

1

oy, Uy Uy
B J/ J/
| Za -

prox—point gradient clipped gradient
L(y) = Uy) Ge(y) = L(x) +(VUx),y —=x)  Le(y) = (6(x) + (VE(x),y —x))"

algorithm template:

sample z; ~ D(x;)
. 1
Yes1 = argmin {zxt(y,zf) )+ ol - xtuz}
y

(clipped gradient model introduced in Asi-Duchi 2019)
20



Model-based algorithms

Assumptions: there exist a1, ap > 0 such that

® convexity
lx(+, z) is convex, U (-, Z) + r is az-strongly convex
® bias/variance
E[VA(x2)] = VA, E|VE(x2) - VEK < o2
® accuracy

ElL(x,2)] = K00, ElLy, 2]+ Zlx - yI2 < &)

21



Model-based algorithms

Assumptions: there exist a1, ap > 0 such that

® convexity
lx(+, z) is convex, U (-, Z) + r is az-strongly convex
® bias/variance
E[VA(x2)] = VA, E|VE(x2) - VEK < o2
® accuracy

ElL(x,2)] = K00, ElLy, 2]+ Zlx - yI2 < &)

remark:
® similar assumptions in (Davis-Drusvyatskiy '19, Asi-Duchi '19)
® tighter models = better algorithms (Ryu-Boyd '14, Asi-Duchi '19)

21



Model-based algorithms
e algorithm: sample z; ~ D(x;)

. 1
i1 = argmin { L (v, 2) +7(y) + 5l =l
y

¢ theorem (Drusvyatskiy-X '20)
—if 2 < 3. algorithm finds x with E[p(x) — ¢(x)] < € using

a1tag

L p(x0) — p(X) o’
@) -
(al P og < z + (01 + aa)e samples

22



Model-based algorithms

e algorithm: sample z; ~ D(x;)

. 1
i1 = argmin { L (v, 2) +7(y) + 5l =l

y

¢ theorem (Drusvyatskiy-X '20)
— if 28

a1tag

< 3, algorithm finds x with E[p(x) — ¢(X)] < € using

o( L .|og<s0(xO)—so(>‘<))+ 02
a1 + a -

— if 28

altap

(1 + ap)e

0.2

o2
@ (L log (”X" all ) +
a1 + ap € (

a1 + a2)2€

) samples

< 1, algorithm finds x with ||x — X||?> < ¢ using

) samples

22



Model-based algorithms
e algorithm: sample z; ~ D(x;)

. 1
xeer = argmin {6 (y,20) + r(y) + - |y = x|}
y n

¢ theorem (Drusvyatskiy-X '20)
—if 2 < 3. algorithm finds x with E[p(x) — ¢(x)] < € using

a1tag

L o °c 2
@ ( - log <SO(XO) #(X) + 7 samples
o1 + Qo € (al + 042)6

— if 28

altap

L 2 2
O——log o = I + 7 5 samples
a1 + Qo € (Oél + ag) €

< 1, algorithm finds x with ||x — X||?> < ¢ using

® rates for stochastic PPM and clipped gradient follow immediately

22



Numerical experiments of model-based algorithms

example of strategic classification, step size 1y = ﬁ
10° — G —
spp 100 PP
— 5G — 56
10
10
o S
[ ) 100
= 0 ES
100
10
0
107*
[I) IUIUD AO‘CID BOhD BCIIUD lUOIDCI [I) ZU‘CID 40I0D HlI(]D BUICID lUCiDU
iteration t iteration t
(a) y=0.1. (b) v = 0.25.

® all three methods perform similarly asymptotically

® initial stage:
— SG sensitive to relatively large initial step sizes
— stochastic PPM and clipped gradient more preferable
(investigated in Asi-Duchi '19 for fixed distribution)

23



Inexact repeated minimization (IRM)

deployment of decision rule much more expensive than sampling

24



Inexact repeated minimization (IRM)

deployment of decision rule much more expensive than sampling

® state-wise algorithm

fors=1,2,...,5do
Us = Xs—1,T
fort=1,2,..., T do
sample zs,; ~ D(us)

xeein = argmin, { £ (v, 26) + r(y) + Ally = xeel}

24



Inexact repeated minimization (IRM)

deployment of decision rule much more expensive than sampling

® state-wise algorithm

fors=1,2,...,5do
Us = Xs—1,T
fort=1,2,..., T do
sample zs,; ~ D(us)

xeein = argmin, { £ (v, 26) + r(y) + Ally = xeel}

® Mendler-Dunner, Perdomo, Zrnic, Hardt '20: established
“deployments/samples” trade-off for IRM with SG method

¢ theorem (Drusvyatskiy-X '20)
If p < 1, can implement IRM with all previous algorithms with
same sample efficiency and only lflp log(1/e) deployments.

24



Summary
® stochastic optimization with decision-dependent distributions

minimize ZNE(X) [0(x,z)]

tractable solution concept: equilibrium (Perdomo et al. '20)
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Summary
® stochastic optimization with decision-dependent distributions

minimize ZNE(X) [0(x,z)]

tractable solution concept: equilibrium (Perdomo et al. '20)

x =argmin E [f(x,2)] + r(x)

X ZND()?)

e Meta Theorem: Algorithms that sample from D(x;) can be
viewed as same algorithms applied to the static problem

minimize E |f(x,z)| + r(x
mize B [f(x.2)] + (4

with “bias,” and the “bias” — 0 linearly as x; — X.
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