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Stochastic optimization

stochastic optimization problem

minimize
x∈Rn

F (x) := Eξ[f (x , ξ)]

classical stochastic approximation method [Robbins and Monro, 1951]

xt+1 = xt − γt dt

• dt ∈ Rn: stochastic search direction

– stochastic gradient: dt = ∇f (xt , ξt)
– momentum (EMA): dt = βdt−1 + (1− β)∇f (xt , ξt)

• assumptions: convexity and/or smoothness

• convergence analysis: guarantees in expectation, rate of convergence
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The myth about Adam and AdamW

Adam [Kingma and Ba, 2015] and AdamW [Loshchilov and Hutter, 2019]

xt+1 = xt −
αt√
vt + ϵ

⊙mt −αtλxt

where mt and vt are EMA of gt and g 2
t :

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

myths about Adam(W)
• role of 2nd moment: diagonal preconditioning or something else?
• choice of hyper-parameters (e.g., why β1 = 0.9 and β2 = 0.99 ?)
• why AdamW performs much better than Adam?
• what is a convincing convergence analysis (that can explain all of above)?

motivation: demystify Adam(W) and derive better/simpler algorithms
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Stochastic Approximation

• find x∗ such that G (x∗) = 0 where G : Rn → Rn is defined as

G (x) := Eξ[g(x , ξ)]

• stochastic approximation [Robbins and Monro, 1951]

xt+1 = xt − αt g(xt , ξt)

• rich literature on convergence analysis
– convergence in mean-square sense, almost sure convergence
– rate of convergence (matching lower-bounds)

• aiming condition (weaker than convexity)〈
x − x∗, Eξ[g(x , ξ)]

〉
> 0 ∀ x ̸= x∗

• BCOS: a general framework for algorithm design and analysis
– block-coordinate weighted aiming (neither convexity nor smoothness)
– almost sure convergence (leveraging classic results in 1950’s)

4



Stochastic Approximation

• find x∗ such that G (x∗) = 0 where G : Rn → Rn is defined as

G (x) := Eξ[g(x , ξ)]

• stochastic approximation [Robbins and Monro, 1951]

xt+1 = xt − αt g(xt , ξt)

• rich literature on convergence analysis
– convergence in mean-square sense, almost sure convergence
– rate of convergence (matching lower-bounds)

• aiming condition (weaker than convexity)〈
x − x∗, Eξ[g(x , ξ)]

〉
> 0 ∀ x ̸= x∗

• BCOS: a general framework for algorithm design and analysis
– block-coordinate weighted aiming (neither convexity nor smoothness)
– almost sure convergence (leveraging classic results in 1950’s)

4



Stochastic Approximation

• find x∗ such that G (x∗) = 0 where G : Rn → Rn is defined as

G (x) := Eξ[g(x , ξ)]

• stochastic approximation [Robbins and Monro, 1951]

xt+1 = xt − αt g(xt , ξt)

• rich literature on convergence analysis
– convergence in mean-square sense, almost sure convergence
– rate of convergence (matching lower-bounds)

• aiming condition (weaker than convexity)〈
x − x∗, Eξ[g(x , ξ)]

〉
> 0 ∀ x ̸= x∗

• BCOS: a general framework for algorithm design and analysis
– block-coordinate weighted aiming (neither convexity nor smoothness)
– almost sure convergence (leveraging classic results in 1950’s)

4



Outline

• background and motivation

• BCOS: block coordinate optimal stepsizes

• instantiations of BCOS

– search directions: stochastic gradient, momentum, preconditioned, . . .
– 2nd moment estimators: EMA, conditional estimator

• numerical experiments

• convergence analysis

5



A general form of stochastic approximation (SA)

SA with block-coordinate stepsizes

xt+1,k = xt,k − γt,kdt,k , k = 1, . . . ,m

• block partition: xt,k , dt,k ∈ Rnk for k = 1, . . . ,m, with
∑m

i=1 nk = n

• each block share common stepsize γt,k > 0 for each k = 1, . . . ,m

• full-vector notation
xt+1 = xt − st ⊙ dt

where st = [st,1, . . . , st,m] ∈ Rn with st,k = γt,k1nk ∈ Rnk

examples of search direction dt ∈ Rn

• stochastic gradient: dt = ∇f (xt , ξt)

• stochastic momentum: dt = βdt−1 + (1− β)∇f (xt , ξt)

• can also work with preconditioned directions and Muon
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Expected distance to an optimal point

distance of xt+1 to an optimal point x∗

∥xt+1 − x∗∥2 = ∥xt − st ⊙ dt − x∗∥2

= ∥xt − x∗∥2 − 2⟨xt − x∗, st ⊙ dt⟩+ ∥st ⊙ dt∥2

= ∥xt − x∗∥2 +
m∑

k=1

(
−2γt,k⟨xt,k − x∗,k , dt,k⟩+ γ2

t,k∥dt,k∥2
)

conditional expectation

Et [·] := E[·|x0, d0, x1, d1, . . . , dt−1, xt ]

expected distance

Et

[
∥xt+1−x∗∥2

]
= ∥xt−x∗∥2+

m∑
k=1

(
−2γt,k

〈
xt,k−x∗,k , Et [dt,k ]

〉
+γ2

t,kEt

[
∥dt,k∥2

])
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Inspiration from Polyak stepsize

• (sub)gradient method for convex optimization: xt+1 = xt − γt∇f (xt)

• distance of xt+1 to an optimal point x∗

∥xt+1 − x∗∥2 = ∥xt − γt∇f (xt)− x∗∥2

= ∥xt − x∗∥2 − 2γt∇f (xt)
T (xt − x∗) + γ2

t ∥∇f (xt)∥2

(by convexity) ≤ ∥xt − x∗∥2 − 2γk
(
f (xt)− f ⋆

)
+ γ2

t ∥∇f (xt)∥2

• choose γt to minimize upper bound on ∥xt+1 − x∗∥2

γ̂t =
f (xt)− f ⋆

∥∇f (xt)∥2

• limitations

– requires convexity (but can derive similar stepsizes using smoothness)
– do not have access of f ⋆ in general (and f (xt) in stochastic setting)
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Block coordinate optimal stepsizes (BCOS)

choose γt,k minimize expected distance of xt+1 from x∗

Et

[
∥xt+1−x∗∥2

]
= ∥xt−x∗∥2+

m∑
k=1

(
−2γt,k

〈
xt,k−x∗,k , Et [dt,k ]

〉
+γ2

t,kEt

[
∥dt,k∥2

])
block-coordinate optimal stepsizes

γ̂t,k =

〈
xt,k − x∗,k , Et [dt,k ]

〉
Et [∥dt,k∥2]

, k = 1, . . . ,m

obviously, does not work in practice

• do not have access to x∗
• cannot compute Et [·] precisely
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Simplify optimal stepsize rule

γ̂t,k =
⟨xt,k − x∗,k , Et [dt,k ]⟩

Et [∥dt,k∥2]
• absorb quantities related to x∗ into tunable parameters αt,k〈

xt,k − x∗,k , Et [dt,k ]
〉
= ∥xt,k − x∗,k∥∥Et [dt,k ]∥ cos θt,k
≈ αt,k∥Et [dt,k ]∥

restrict αt,k > 0: being “optimistic” that ⟨xt,k − x∗,k ,Et [dt,k ]⟩ > 0

• use a single αt > 0

γ̃t,k = αt
∥Et [dt,k ]∥
Et [∥dt,k∥2]

– assuming αt,k similar (better to exploit block-wise structure if possible)

– stepsize schedule: αt should decrease as E[∥xt − x∗∥] becomes small

10



Simplify optimal stepsize rule

γ̂t,k =
⟨xt,k − x∗,k , Et [dt,k ]⟩

Et [∥dt,k∥2]
• absorb quantities related to x∗ into tunable parameters αt,k〈

xt,k − x∗,k , Et [dt,k ]
〉
= ∥xt,k − x∗,k∥∥Et [dt,k ]∥ cos θt,k
≈ αt,k∥Et [dt,k ]∥

restrict αt,k > 0: being “optimistic” that ⟨xt,k − x∗,k ,Et [dt,k ]⟩ > 0

• use a single αt > 0

γ̃t,k = αt
∥Et [dt,k ]∥
Et [∥dt,k∥2]

– assuming αt,k similar (better to exploit block-wise structure if possible)

– stepsize schedule: αt should decrease as E[∥xt − x∗∥] becomes small
10



Approximate the expectations

γ̃t,k = αt
∥Et [dt,k ]∥
Et [∥dt,k∥2]

• approximate Et [·] using exponential moving average (EMA)

ut,k = βut−1,k + (1− β)dt,k

vt,k = βvt−1,k + (1− β)∥dt,k∥2

• practical block-coordinate stepsize

γt,k = αt
∥ut,k∥
vt,k + ϵ

– ut,k ∈ Rnk and vt,k ∈ R+: mean and 2nd-moment estimators respectively
– ϵ > 0 on denominator: avoid numerical instability when vt,k too small

problem: ratio of two EMA estimators can be volatile
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Further simplfication

• define signal fraction (SiF)

ρt,k =
∥Et [dt,k ]∥2

Et [∥dt,k∥2]
=

∥Et [dt,k ]∥2

∥Et [dt,k ]∥2 + Var(dt,k)
∈ [0, 1]

• decomposition of stepsize rule (keeping scaling-invariance)

γ̃t,k = αt

√
∥Et [dt,k ]∥2
Et [∥dt,k∥2]

1√
Et [∥dt,k∥2]

= αt
√
ρt,k

1√
Et [∥dt,k∥2]

• approximate 2nd-moment with EMA

γ̃t,k = α′
t

1√
Et [d2

t,k ]
=⇒ γt,k = α′

t

1
√
vt,k + ϵ

– assimilate effect of ρt,k into α′
t together with ∥xt,k − x∗,k∥ cos(∡)

– only one EMA estimator on denominator (under square-root)
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Instantiations of BCOS

focus on single-coordinate blocks (element-wise arithmetic)

vt = βvt−1 + (1− β)d2
t

xt+1 = xt − αt
dt√
vt + ϵ

• search direction dt
– stochastic gradient: gt = ∇f (xt , ξt)
– stochastic momentum: mt = βdt−1 + (1− β)gt

• 2nd-moment estimator vt
– EMA estimator: vt = β′vt−1 + (1− β′)d2

t

– conditional estimator when dt = mt

• BCOS with decoupled weight decay
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BCOS with stochastic gradient as search direction

Algorithm BCOS-g

input: x0, {αt}t≥0, β ∈ [0, 1), ϵ > 0

v−1 = g 2
0

for t = 0, 1, 2, . . . do

gt = ∇f (xt , ξt)

vt = βvt−1 + (1− β)g 2
t

xt+1 = xt − αt
gt√
vt + ϵ

• same as RMSprop
[Tieleman and Hinton, 2012]

• special case: β = 0 and ϵ = 0

xt+1 = xt − αtsign(gt)

(sign-SGD method)
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BCOS with momentum as search direction

Algorithm BCOS-m

input: x0, {αt}, β1, β2 ∈ [0, 1), ϵ > 0

m−1 = g0, v−1 = g 2
0

for t = 0, 1, 2, . . . do

gt = ∇f (xt , ξt)

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)m
2
t

xt+1 = xt − αt
mt√
vt + ϵ

• two smoothing factors β1, β2

– can choose independently
– β1=β2 works well in practice

• Adam: replace m2
t by g 2

t

– mismatch between direction
and 2nd moment estimator

– need to compensate with
larger β2

(e.g., β1 = 0.9, β2 = 0.99)
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BCOS with conditional estimator

• notice conditional expectation in γ̃t,k =
αt√
Et [d2

t ]

• exploit structure when dt = mt :

Et

[
m2

t

]
= Et

[
(βmt−1 + (1− β)gt)

2
]

= β2Et [m
2
t−1] + 2β(1− β)Et [mt−1 ⊙ gt ] + (1− β)2Et [g

2
t ]

= β2m2
t−1 + 2β(1− β)mt−1 ⊙ Et [gt ] + (1− β)2Et [g

2
t ]

– approximate Et [gt ] with mt

– approximate Et [g
2
t ] with g 2

t (coefficient (1− β)2 very small in practice)

• resulting 2nd-moment estimator

vt = β2m2
t−1 + 2β(1− β)mt−1 ⊙mt + (1− β)2g 2

t
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BCOS with conditional estimator

Algorithm BCOS-c (ugly version)

input: x0, {αt}, β ∈ [0, 1), ϵ > 0

m−1 = g0, v−1 = g 2
0

for t = 0, 1, 2, . . . do

gt = ∇f (xt , ξt)

mt = βmt−1 + (1− β)gt

vt = β2m2
t−1+2β(1−β)mt−1⊙mt +(1−β)2g 2

t

xt+1 = xt − αt
mt√
vt + ϵ

• works well in practice!

• fewer optimizer state
(do not store vt−1)

• fewer hyper-parameters
(one smoothing factor)

• but it looks ugly!
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BCOS with conditional estimator

• notice conditional expectation in γ̃t,k =
αt√
Et [d2

t ]
• exploit structure when dt = mt :

Et

[
m2

t

]
= Et

[
(βmt−1 + (1− β)gt)

2
]

= β2Et [m
2
t−1] + 2β(1− β)Et [mt−1 ⊙ gt ] + (1− β)2Et [g

2
t ]

= β2m2
t−1 + 2β(1− β)mt−1 ⊙ Et [gt ] + (1− β)2Et [g

2
t ]

– approximate Et [gt ] with ��HHmt → mt−1

– approximate Et [g
2
t ] with g 2

t (coefficient (1− β)2 very small in practice)

• resulting 2nd-moment estimator

vt =
(
1− (1− β)2

)
m2

t−1 + (1− β)2g 2
t

memoryless “EMA” form: vt = β′m2
t−1 + (1− β′)g 2

t with β′ = 1− (1− β)2
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BCOS with conditional estimator

Algorithm BCOS-c

input: x0, {αt}, β ∈ [0, 1), ϵ > 0

m−1 = g0, v−1 = g 2
0

for t = 0, 1, 2, . . . do

gt = ∇f (xt , ξt)

mt = βmt−1 + (1− β)gt

vt =
(
1− (1− β)2

)
m2

t−1 + (1− β)2g 2
t

xt+1 = xt − αt
mt√
vt + ϵ

• fewer optimizer state
(do not store vt−1)

• fewer hyper-parameters
(one smoothing factor)

• and it looks beautiful

compare with Adam

• replace vt−1 with m2
t−1

• explains β2 ≈ 1− (1− β1)
2
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BCOS with decoupled weight decay

• minimize regularized Eξ[f (x , ξ)] +
λ
2
∥x∥2

• can apply BCOS with gt := ∇f (xt , ξt) + λxt , but does not work well

• AdamW: Adam with decoupled weight decay [Loshchilov and Hutter, 2019]

xt+1 = xt − αt
mt√
vt + ϵ

−αtλxt

= (1− αtλ)xt − αt
mt√
vt + ϵ

where mt is momentum of gt = ∇f (xt , ξt), not including λxt

• BCOSW: apply the same change to BCOS
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BCOSW with conditional estimator

Algorithm BCOSW-c

input: x0, {αt}, β1, β2 ∈ [0, 1), ϵ > 0

m−1 = g0, v−1 = g 2
0

for t = 0, 1, 2, . . . do

gt = ∇f (xt , ξt)

mt = β1mt−1 + (1− β1)gt

vt =
(
1− (1− β)2

)
m2

t−1 + (1− β)2g 2
t

xt+1 = (1− αtλ)xt − αt
mt√
vt + ϵ

• decoupled weight decay

• apply similar change for
BCOSW-g, BCOSW-m

• BCOSW-c perform best in
experiments
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Outline

• background and motivation

• BCOS: block coordinate optimal stepsizes

• instantiations of BCOS

– search directions: stochastic gradient, momentum, preconditioned, . . .
– 2nd moment estimators: EMA, conditional estimator

• numerical experiments

• convergence analysis
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Experiments: varying smoothing factors

training GPT2 (126M) on OpenWebText dataset
• α = 0.002, warm up 2k iterations, then cosine decay (×0.01)
• weight decay λ = 0.1
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Experiments: comparing -g, -m, -c variants

training GPT2 (126M) on OpenWebText dataset

• α = 0.002, warm up 2k iterations, then cosine decay (×0.01)

• weight decay λ = 0.1
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Experiments: loss vs lr

training GPT2 (126M) on OpenWebText dataset

• warm up 2k iterations, then cosine decay (×0.01)

• weight decay λ = 0.1
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Experiments: decoupled weight decay

training GPT2 (126M) on OpenWebText dataset

• α = 0.002, warm up 2k iterations, then cosine decay (×0.01)

• weight decay λ = 0.1
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Experiments: ResNet and Vision Transformer

• ResNet20 on CIFAR10 (using both cosine decay and step decay)

• vision transformer (ViT) on ImageNet (cosine decay)
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Outline

• background and motivation

• PBCOS: block coordinate optimal stepsizes

• instantiations of BCOS

– search directions: stochastic gradient, momentum, preconditioned, . . .
– 2nd moment estimators: EMA, conditional estimator

• numerical experiments

• convergence analysis
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Convergence analysis in two steps

• analysis of conceptual algorithm

xt+1 = (1− αtλ)xt − γ̃t ⊙ dt , where γ̃t = αt
1√

Et [d2
t ]

following classical SA literature in 1950’s

• analysis of practical algorithm

xt+1 = (1− αtλ)xt − γt ⊙ dt , where γt = αt
1√

vt + ϵ

based on bounding the difference between expected updates∣∣Et [γ̃t ⊙ dt ]− Et [γt ⊙ dt ]
∣∣ ≤ ct

∣∣Et [γ̃t ⊙ dt ]
∣∣+O(ϵ) +O(Vart(vt))
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Classical aiming conditions

• classical stochastic approximation (SA) for solving E[g(x∗, ξ)] = 0

xt+1 = xt − αt g(xt , ξt)

aiming conditions critical in convergence analysis

– original SA paper [Robbins and Monro, 1951]
– multi-dimensional extension [Blum, 1954]
– many others . . .

• simplified presentation (strong aiming condition) [Sakrison, 1966]

µ∥x − x∗∥2 ≤
〈
x − x∗,E[g(x , ξ)]

〉
≤ κ∥x − x∗∥2

• stochastic optimization: minimize E[f (x , ξ)] and g(x , ξ) = ∇f (x , ξ)

(strong) convexity + smoothness =⇒ (strong) aiming
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Aiming condition with coordinate-wise stepsizes

• expected update for conceptual BCOS

Et [γ̃t ⊙ dt ] = Et

[
αt

dt√
Et [d2

t ]

]
= αt

Et [dt ]√
Et [d2

t ]
= αt

√
ρt ⊙ sign(Et [dt ])

• Assumption A (Aiming):

– there exists x∗ ∈ Rn such that the following holds for all t ≥ 0 almost surely〈
xt − x∗,

√
ρt ⊙ sign(Et [dt ]) + λxt

〉
≥ λ∥xt − x∗∥2

– if Et [dt ] = E[dt |xt ], then it suffices to have it for every x ∈ Rn

• compare with classical aiming: one-sided bound only (due to ρt,k ≤ 1)

• assumes neither convexity nor smoothness, but overlapping with convexity
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Understanding the aiming condition

• block-coordinate weighted aiming (simplified version with λ = 0)〈
xt − x∗,

√
ρt ⊙ sign(Et [dt ])

〉
≥ 0

– sign of expected search direction weighted by SiF: ρt,k =
∥Et [dt,k ]∥2

Et [∥dt,k∥2]
– less contribution from noisy directions

• aiming condition versus convexity

– full-block version recovers classical condition (which follows from convexity)

– can tolerate coordinate-wise nonconvexity

– cannot handle non-diagonal ill-conditioning (not surprising)
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Almost-sure convergence of conceptual BCOSW

• lemma: under Assumption A, 0 ≤ αtλ < 1, and c∗=n+λ2 ∥x∗∥2+2λ ∥x∗∥1,

Et

[
∥xt+1 − x∗∥2

]
≤ (1− αtλ)

2 ∥xt − x∗∥2 + α2
t c∗,

thus for sufficiently small αt ,

Et

[
∥xt+1−x∗∥2

]
≤ ∥xt−x∗∥2

• theorem: suppose αt ≥ 0 and 0 ≤ αtλ ≤ 1 for all t ≥ 0 and
∞∑
t=0

αt = ∞,

∞∑
t=0

α2
t < ∞,

then Assumption A implies ∥xt − x∗∥ → 0 almost surely

(by “almost supermargingale” lemma of [Robbins and Siegmund, 1971])
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Convergence rates of conceptual BCOSW

• corollary: suppose αt = α > 0 and αλ < 1 then Assumption A implies

E
[
∥xt − x∗∥2

]
≤ (1− αλ)2t E

[
∥x0 − x∗∥2

]
+

α2c∗
1− (1− αλ)2

• theorem: suppose αt = α/(t + 1) with 1/2 < αλ < 1, then Assumption A
implies for all t ≥ 1

E
[
∥xt − x∗∥2

]
≤

α2
(
c ′∗ + λ2E[∥x0 − x∗∥2]

)
2αλ− 1

1

t
+O

(
1

t2αλ

)
(by applying Chung’s lemma [Chung, 1954])
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Analysis of practical BCOSW

• Assumption B (Bias): there exist τ > 0 and ϵ > 0 such that for all t ≥ 0∣∣Et [vt ]− Et [d
2
t ]
∣∣ ≤ τEt [d

2
t ] + ϵ

• lemma: Assumptions B implies∣∣∣∣∣ Et [dt ]√
Et [d2

t ]
− Et

[
dt√
vt + ϵ

]∣∣∣∣∣ ≤ ct

∣∣∣∣∣ Et [dt ]√
Et [d2

t ]

∣∣∣∣∣+O(ϵ) +O(Vart(vt)),

where

ct =
4τ + 3τ2

8
+

8 + 4τ + 3τ2

16

(
1

SNRt(vt + ϵ)
+

1√
SNRt(dt)

√
SNRt(vt + ϵ)

)

• SNRt(·) denotes conditional Signal-to-Noise Ratio, e.g.,

SNRt(dt) =
Et [dt ]

2

Vart(dt)
=

ρt
1− ρt
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Almost sure convergence of practical BCOSW

• theorem (almoost sure convergence to a neighborhood of x∗): suppose

– Assumptions A (Aiming) and B (Bias) hold

– ∥dt∥ bounded almost surely

– 0 ≤ αtλ ≤ 1 for all t ≥ 0 and
∑∞

t=0 αt = ∞ and
∑∞

t=0 α
2
t < ∞

let δ be the smallest constant such that, for all t ≥ 0,

2ct∥
√
ρt∥+O(ϵ) +O(Vart(vt)) ≤ λδ,

then
lim sup
t→∞

∥xt − x∗∥ ≤ δ a.s.

(by Dvoretzky’s theorem and extensions [Dvoretzky, 1956] [Venter, 1966])

• definition of ct reflect bias-variance tradeoff (simplified for τ < 1)

ct < τ +
1

SNRt(vt + ϵ)
+

1√
SNRt(dt)

√
SNRt(vt + ϵ)
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Bias-variance tradeoff

a general framework for convergence analysis

• SGD with dt = gt or dt = mt (using common constant vt for all coordinates)

– high bias: |Et [vt ]− Et [d
2
t ]| = |v − Et [d

2
t ]| for some constant v

– zero variance

• sign-SGD with dt = gt or dt = mt (effectively using vt = d2
t )

– zero bias: Et [vt ] = E[d2
t ]

– high variance: Vart(vt) = Vart(dt)

• Adam(W)

– bias: no closely form (better bound by assuming smoothness)
– variance: Vart(vt) = (1− β2)

2Vart(g
2
t )

• BCOS(W)-c

– bias: Et [vt ]− Et [d
2
t ] = 2β(1− β)mt−1

(
mt−1 − Et [gt ]

)
– variance: Vart(vt) = (1− β)4Vart(g

2
t ) (same as Adam β2 = 1−(1−β)2)
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Summary

BCOS: a family of block-coordinate optimal stepsizes

• basic idea: minimize expected distance of next iterate to an optimal point

• instantiations of BCOS

– search directions: gradient, momentum, preconditioned, spectral, . . .
– 2nd moment estimators: EMA, conditional estimator

• convergence analysis

– two-step convergence analysis: from conceptual to practical
– SiF weighted aiming condition (neither convexity nor smoothness)
– decoupled weight decay: stronger convergence guarantees
– bias-variance tradeoff for practical algorithms (better with smoothness)

• more empirical study to understand full potential
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