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background and motivation
BCOS: block coordinate optimal stepsizes

instantiations of BCOS

— search directions: stochastic gradient, momentum, preconditioned, ...
— 2nd moment estimators: EMA, conditional estimator

numerical experiments

convergence analysis



Stochastic optimization

stochastic optimization problem

minimize F(x) := E¢[f(x, )]

xER"
classical stochastic approximation method [Robbins and Monro, 1951]
Xe+1 = Xe — Ve dy

® d, € R": stochastic search direction

— stochastic gradient: d; = Vf(x, &)
— momentum (EMA): d; = fd;_1 + (1 — B)VF(x:, &)



Stochastic optimization

stochastic optimization problem

minimize F(x) := E¢[f(x, )]

xeR"

classical stochastic approximation method [Robbins and Monro, 1951]
Xe+1 = Xe — Ve dy

® d, € R": stochastic search direction

— stochastic gradient: d; = Vf(x, &)
— momentum (EMA): d; = fd;_1 + (1 — B)VF(x:, &)

® assumptions: convexity and/or smoothness

® convergence analysis: guarantees in expectation, rate of convergence



The myth about Adam and AdamW
Adam [Kingma and Ba, 2015] and AdamW [Loshchilov and Hutter, 2019]

at
Xt+1 = X¢ —
Ve + €

where m; and v; are EMA of g; and g,_?:

my = f1me_1 + (1 — P1)g:
Ve = Bavic1 + (1 — Bo)g?

O My — QX



The myth about Adam and AdamW
Adam [Kingma and Ba, 2015] and AdamW [Loshchilov and Hutter, 2019]

at
Xe41 = X — O my — arAx;
Ve + €

where m; and v; are EMA of g; and th:

my = Bime1 + (1 = B1)gt
ve = Bave1 + (1 — B2)g7
myths about Adam(W)

® role of 2nd moment: diagonal preconditioning or something else?
e choice of hyper-parameters (e.g., why $; = 0.9 and 3, = 0.997)
e why AdamW performs much better than Adam?

e what is a convincing convergence analysis (that can explain all of above)?



The myth about Adam and AdamW
Adam [Kingma and Ba, 2015] and AdamW [Loshchilov and Hutter, 2019]

at
Xe41 = Xp — O my — arAx;
Ve + €

where m; and v; are EMA of g; and gtz:

my = Bime1 + (1 = B1)gt
Ve = Bave1 + (1 — B2)g?
myths about Adam(W)

® role of 2nd moment: diagonal preconditioning or something else?

e choice of hyper-parameters (e.g., why $; = 0.9 and 3, = 0.997)
e why AdamW performs much better than Adam?

e what is a convincing convergence analysis (that can explain all of above)?

motivation: demystify Adam(W) and derive better/simpler algorithms



Stochastic Approximation
e find x. such that G(x.) = 0 where G : R" — R”" is defined as
G(X) = Eﬁ[g(xaf)]
e stochastic approximation [Robbins and Monro, 1951]

X4l = X¢ — Qi g(Xh ft)



Stochastic Approximation
find x, such that G(x.) = 0 where G : R” — R" is defined as
G(x) := Eelg(x, )]
stochastic approximation [Robbins and Monro, 1951]
Xey1 = Xe — e g(Xt, &t)
rich literature on convergence analysis

— convergence in mean-square sense, almost sure convergence
— rate of convergence (matching lower-bounds)

aiming condition (weaker than convexity)

(x = x, E¢[g(x,6)]) >0 Vx#x



Stochastic Approximation
find x, such that G(x.) = 0 where G : R” — R" is defined as
G(X) = Eﬁ[g(xaf)]
stochastic approximation [Robbins and Monro, 1951]

X4l = X¢ — Qi g(xt,&)

rich literature on convergence analysis
— convergence in mean-square sense, almost sure convergence
— rate of convergence (matching lower-bounds)

aiming condition (weaker than convexity)

(x = x, E¢[g(x,6)]) >0 Vx#x

BCOS: a general framework for algorithm design and analysis
— block-coordinate weighted aiming (neither convexity nor smoothness)
— almost sure convergence (leveraging classic results in 1950's)
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A general form of stochastic approximation (SA)

SA with block-coordinate stepsizes

Xt—l—l,k :Xt7k _’Yt,kdt,k, k - 1,...,m
® block partition: x;x, d;x € R™ for k =1,...,m, with Y7 nx =n
® each block share common stepsize ;. , > 0 for each k =1,...,m

e full-vector notation
Xey1 = X — 5 © d;

where s; = [s;1,...,5:.m] € R” with s, = 741, € R™
) ; ; ,yv k



A general form of stochastic approximation (SA)
SA with block-coordinate stepsizes

Xt—l—l,k :XtJ( _’Yt,kdt,k, k - 1,...,m

® block partition: x;x, d;x € R™ for k =1,...,m, with Y7 nx =n
® each block share common stepsize ;. , > 0 for each k =1,...,m
e full-vector notation

Xt+1 = Xt — 5 O d;

where s; = [s;1,...,5:.m] € R” with s, = 741, € R™
) ; ; ,yv k

examples of search direction d; € R”
® stochastic gradient: dr = V£(xe, &)

e stochastic momentum: d; = Sdi_1 + (1 — B)VF (X, &)
® can also work with preconditioned directions and Muon



Expected distance to an optimal point

distance of x;,1 to an optimal point x,

Ixess = x]|* =[x — 5t © de — x|

= [Ixe — %[> = 2(x¢ — xs, 5: © dy) + |5t © |

m

= ||Xt _X*H Z 2’7tk Xtk — X ks dtk> +’7tk||dtkH )
k=1



Expected distance to an optimal point

distance of x;,1 to an optimal point x,

IXer1 — X [1? = [|xe — s © de — x.||?
= [Ixe — %[> = 2(x¢ — xs, 5: © dy) + |5t © |
:“Xt_X*H Z 2’7tk Xtk — X ks dtk>+7tkHdtkH )
k=1

conditional expectation
E:[] := E[|x0, do, X1, 1, ..., de_1, X]

expected distance

Et[HXt—i-l—X*H2] = HXt—X*Hz—i-Z(—2%,/(<Xt,k—X*7k, Et[dt,k]>+7§kEt|:Hdt,k”2})



Inspiration from Polyak stepsize
e (sub)gradient method for convex optimization: x, 1 = x; — 7:Vf(x;)
e distance of x;,1 to an optimal point x,

[xer1 — x:|1? = [[xe — %V F(xe) — x|)?
=[x = x> = 29V (xe) T (xe — x) + 72 VF(x)[?
(by convexity) < ||x; — x,||? — 29k (F(xe) — %) + V2|V F(x)]?



Inspiration from Polyak stepsize
e (sub)gradient method for convex optimization: x, 1 = x; — 7:Vf(x;)
e distance of x;,1 to an optimal point x,

[xer1 — x:|1? = [[xe — %V F(xe) — x|)?
=[x = x> = 29V (xe) T (xe — x) + 72 VF(x)[?
(by convexity) < ||x; — x,||? — 29k (F(xe) — %) + V2|V F(x)]?

® choose ~; to minimize upper bound on ||x;,; — x,||?

- f(x)—f*
TP



Inspiration from Polyak stepsize
(sub)gradient method for convex optimization: x;;1 = x; —7:Vf(x;)
distance of x;,1 to an optimal point x,
Ixes1 = Xl = [lxe — 7V (xe) — x|

=[x = x> = 2% VF(x) " (e — %) + 7V ()
(by convexity) < [x — x.|* — 27 (f(x:) — F*) + 2| VF(x)[]?
choose 7; to minimize upper bound on |x;;; — x|
. f(x) —f*
Ve = 2
IV ()

limitations

— requires convexity (but can derive similar stepsizes using smoothness)
— do not have access of f* in general (and f(x;) in stochastic setting)



Block coordinate optimal stepsizes (BCOS)
choose 7; x minimize expected distance of x;;1 from x,
e [llxes =7 = lxe =2 D0 (=29 — 50 Eeldesl) 492 Ee 1 2]
k=1

block-coordinate optimal stepsizes

<Xt,k — X,k Et[dt,k]>
E.[ld: 2] ’

Vek = k=1....,m



Block coordinate optimal stepsizes (BCOS)

choose 7; x minimize expected distance of x;11 from x,

e [llxes =7 = lxe =2 D0 (=29 — 50 Eeldesl) 492 Ee 1 2]
k=1

block-coordinate optimal stepsizes

<Xt,k — X ks Et[dt,k]>

, k=1,....m
Ee[l|de]?]

Ytk =

obviously, does not work in practice
® do not have access to x,

e cannot compute E,[-] precisely



Simplify optimal stepsize rule

<Xt,k — X,k Et[dt,k]>
E.[ld: %]

® absorb quantities related to x, into tunable parameters o

<Xt,k — Xi k) Et[dt,k]> = ||Xt,k - X*,kH”Et[dt,k]“ Ccos ‘gt,k
~ oy | |E¢[dr ]

Ttk =

restrict a, x > 0: being “optimistic’ that (x;x — x. x, E¢t[d:4]) > 0

10



Simplify optimal stepsize rule

<Xt,k — X,k Et[dt,k]>
E.[ld: %]

® absorb quantities related to x, into tunable parameters o

Ttk =

<Xt,k — Xi k) Et[dt,k]> = ||Xt,k - X*,kH HEt[dt,k]“ Ccos ‘9t,k
~ oy | |E¢[dr ]

restrict a, x > 0: being “optimistic’ that (x;x — x. x, E¢t[d:4]) > 0

® use a single a; >0
~_Ec[de ]l

= a —_—
Tk [ dek ]

— assuming ay k similar (better to exploit block-wise structure if possible)

— stepsize schedule: «; should decrease as E[||x; — x.||] becomes small

10



Approximate the expectations

~ [Ee[de.i]ll

Ytk = Ct =7 7 1157
E.[llde.l?]
e approximate E;[-] using exponential moving average (EMA)

Utk = 6Ut—1,k + (1 - ﬁ)dt,k
Vik = Bve-1k + (1= B) | dell®

® practical block-coordinate stepsize
[ k]

Ytk = O
Vek + €

— U, € R™ and v, € Ry: mean and 2nd-moment estimators respectively
— € > 0 on denominator: avoid numerical instability when v; , too small

11



Approximate the expectations

~ [Ee[de.i]ll

Ytk = Ct =7 7 1157
E.[llde.l?]
e approximate E;[-] using exponential moving average (EMA)

Utk = ﬂut—l,k + (1 - ﬁ)dt,k
Vik = Bve-1k + (1= B) | dell®

® practical block-coordinate stepsize
[ k]

Ytk = O
Vek + €

— U, € R™ and v, € Ry: mean and 2nd-moment estimators respectively
— € > 0 on denominator: avoid numerical instability when v; , too small

problem: ratio of two EMA estimators can be volatile

11



Further simplfication

e define signal fraction (SiF)

o LEdddP  [Ed P
* T Edldesl2] T TELdesd [+ Var(de)

€ [0,1]
e decomposition of stepsize rule (keeping scaling-invariance)

[Ee[de ][I 1

Vek = At/ Pt,
‘ Ecllldesll?] \/E[der 7] o \/Etludtkl

12



Further simplfication

e define signal fraction (SiF)

[Ee[de]l® [E:[de ][I
Ecflldexll?]  IIE:lde ][ + Var(dek)

e decomposition of stepsize rule (keeping scaling-invariance)

€ [0,1]

Ptk =

o JIEGE 1 1
’ E-[lldeil?] \/Ec[l[de.i]I?] V Et[lldtkl
® approximate 2nd-moment with EMA
1 1

~ ’ /
Ttk = Q= F—— k= Qg — —
z/ Et[dt2,k] Vek T+ €

— assimilate effect of p; x into ) together with ||x; x — x. k|| cos(£)
— only one EMA estimator on denominator (under square-root)

12
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PBCOS: block coordinate optimal stepsizes

instantiations of BCOS

— search directions: stochastic gradient, momentum, preconditioned, ...
— 2nd moment estimators: EMA, conditional estimator

numerical experiments

convergence analysis
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Instantiations of BCOS

focus on single-coordinate blocks (element-wise arithmetic)

Ve = Bveq + (1 - 5)dt2
d;
Vet €

Xt+1 = Xp — Ot

14



Instantiations of BCOS
focus on single-coordinate blocks (element-wise arithmetic)

Vi = Vi1 + (1 - 5)dt2
d;
Vet €

Xt+1 = Xp — Ot

® search direction d;

— stochastic gradient: g; = V£ (x:,&;)
— stochastic momentum: m; = Sd;—1 + (1 — 5)g:

® 2nd-moment estimator v;
— EMA estimator: v; = 'v;_; + (1 — 3')d?
— conditional estimator when d; = m;

e BCOS with decoupled weight decay

14



BCOS with stochastic gradient as search direction

Algorithm BCOS-g

. ® same as RMSprop
input: Xo, {ac}ez0, f €[0,1), >0 [Tieleman and Hinton, 2012]

Vo1 = g5
fort=0,1,2,... do
gt = VI(xe, &)

Ve = fBve1 + (1 - B)gf (sign-SGD method)
8t
Xey1 = Xp —
t+1 t t\/7t+ €

® special case: S =0ande=0

Xer1 = Xe — ausign(gy)

15



BCOS with momentum as search direction

Algorithm BCOS-m

® two smoothing factors 1, 5,

input: xo, {a:}, 51,5 €[0,1), e >0 — can choose independently

- s — (31 =[5> works well in practice
m-1 = 8o, V-1= 8%

fort=0,1,2,... do
8t = Vf(xhgt)
my = ﬁlmt—l + (1 - ﬁ1)gt

Vi = fove—r + (1 — 62)'”%
my

Vet €

Xt4+1 = Xp — Q¢

16



BCOS with momentum as search direction

Algorithm BCOS-m

® two smoothing factors 1, 5,

input: xo, {a:}, 51,5 €[0,1), e >0 — can choose independently
m1= g V1= gg — p1=/[ works well in practice
for t =0,1,2,... do * Adam: replace m; by g7
g = V(x:, &) — mismatch between direction
t — ty St

and 2nd moment estimator
me = Bime_1 + (1 — p1)g: — need to compensate with
Ve = Bave1 + (1 — Bo)m} larger 3,
o (e.g.. B = 0.9, B, = 0.99)
Vet €

Xt4+1 = Xp — Q¢

16



BCOS with conditional estimator

Q¢

VE:df]

® notice conditional expectation in V; , =

17



BCOS with conditional estimator

Q¢

VE:df]

® notice conditional expectation in V; , =

® exploit structure when d; = m;:

E; [mﬂ =E; [(ﬂmtfl +(1 - B)gt)ﬂ
= BPE[m} 4]+ 26(1 — B)Ei[me_1 © g] + (1 — B)’Ec[g7]
= mZ_; +2B(1 — B)me—1 © E¢lge] + (1 — B)°E:[g?]

17



BCOS with conditional estimator

Q¢

VE:df]

® notice conditional expectation in V; , =
® exploit structure when d; = m;:
E; [mﬂ =E; [(ﬂmt—l + (1 - B)gt)ﬂ

= BPE[m? ] + 28(1 — B)E.[me1 ® g] + (1 — B)*E([g]
= mZ_; +2B(1 — B)me—1 © E¢lge] + (1 — B)°E:[g?]

— approximate E,[g;] with m,
— approximate E.[g?] with g2 (coefficient (1 — 3)? very small in practice)

17



BCOS with conditional estimator

Q¢

VE:df]

® notice conditional expectation in V; , =

® exploit structure when d; = m;:

E; [mﬂ =E; [(ﬂmtfl +(1 - B)gt)ﬂ
= BPE[m} 4]+ 26(1 — B)Ei[me_1 © g] + (1 — B)’Ec[g7]
= mZ_; +2B(1 — B)me—1 © E¢lge] + (1 — B)°E:[g?]

— approximate E,[g;] with m,
— approximate E.[g?] with g2 (coefficient (1 — 3)? very small in practice)

® resulting 2nd-moment estimator

ve = B2m2 4+ 28(1 — B)me_y © m. + (1 — §)%g?

17



BCOS with conditional estimator

Algorithm BCOS-c (ugly version)

input: xo, {a:}, 5 €[0,1),e>0

_ 2
m_; =80, V-1= 8

fort=0,1,2,...

do

gt = VI(x, &)

my = me_1+ (1 — B)g:
ve = 32m7_; +28(1=F)me_1 © me + (1-5)g7

Xt41 = X¢ — Ot

my

VVe e

e works well in practice!

e fewer optimizer state
(do not store v;_1)

e fewer hyper-parameters
(one smoothing factor)

18



BCOS with conditional estimator

Algorithm BCOS-c (ugly version)

input: x, {a:}, B€[0,1), ¢>0 e works well in practice!
m_,=go V.1= go2 e fewer optimizer state
fort=0,1,2,... do (do not store v;_1)

gr = VI(x, &) e fewer hyper-parameters

one smoothing factor
mt=5mt—1+(1—5)gt ( & )

ve = Pm?_ | +28(1-B)me_1 @ my + (1-5)%g?  ® but it looks ugly!
my

VVe e

Xt41 = X¢ — Ot

18



BCOS with conditional estimator

Q¢

VE:[df]

® notice conditional expectation in V; , =
® exploit structure when d; = m;:
Et[mﬂ =E, [(5mt—1 + (1 - ﬂ)gt)ﬂ

= BPEi[m{ 1] +26(1 — B)E[m,—1 © g + (1 — B)°E¢[g{]
= 2m}_; +26(1 = B)me_1 © E¢fge] + (1 — B)°E¢[g7]

— approximate E;[g;] with mg — m;_
— approximate E.[g?] with gZ (coefficient (1 — 3)? very small in practice)

19



BCOS with conditional estimator

Q¢

VE:[df]

® notice conditional expectation in V; , =
® exploit structure when d; = m;:
Et[mﬂ =E, [(5mt—1 + (1 - 5)&)2}

= BPEi[m{ 1] +26(1 — B)E[m,—1 © g + (1 — B)°E¢[g{]
= 2m}_; +26(1 = B)me_1 © E¢fge] + (1 — B)°E¢[g7]

— approximate E;[g;] with mg — m;_
— approximate E.[g?] with gZ (coefficient (1 — 3)? very small in practice)

® resulting 2nd-moment estimator

ve=(1—(1-p)?)my +(1-P)g;

19



BCOS with conditional estimator

Q¢

VE:[df]

notice conditional expectation in 7, =
exploit structure when d; = m;:
Et[mﬂ =E, [(5mt—1 + (1 - 5)&)2}

= BPEi[m{ 1] +26(1 — B)E[m,—1 © g + (1 — B)°E¢[g{]
= 2m}_; +26(1 = B)me_1 © E¢fge] + (1 — B)°E¢[g7]

— approximate E;[g;] with fn{ — my_1
— approximate E.[g?] with gZ (coefficient (1 — 3)? very small in practice)

resulting 2nd-moment estimator

— (1—(1=BP)m, + (1 — B8’

memoryless “EMA” form: v, = 8'm?_; + (1 — 8')gZ with ' =1 — (1 — §)?

19



BCOS with conditional estimator

Algorithm BCOS-c

input: xo, {a:}, 5 €[0,1),e>0

m_1 =80, V-1 = gg
fort=0,1,2,... do

gt = VI(x &)

my = Bmy_1 + (1 — B)g:

vt:(l—(l

Xt4+1 = Xt — Q¢

—BY)mi_ + (1 - B)°g?

my

Vet €

® fewer optimizer state
(do not store v;_1)

® fewer hyper-parameters
(one smoothing factor)

® and it looks beautiful

20



BCOS with conditional estimator

Algorithm BCOS-c

input: xo, {a:}, 5 €[0,1),e>0

m_; =go, V-1 = g&

fort=0,1,2,... do
gt = VI(x &)
my = Bmy_1 + (1 — B)g:
ve=(1—(1—B8))mi_,+(1—5) g

my

Vet €

Xt4+1 = Xt — Q¢

® fewer optimizer state
(do not store v;_1)

® fewer hyper-parameters
(one smoothing factor)

® and it looks beautiful

compare with Adam
® replace v, ; with m?
® explains o ~ 1 — (1 - 3;)?

20



BCOS with decoupled weight decay

* minimize regularized E¢[f(x,&)] + 3|/x||?

e can apply BCOS with g; := V£ (x:,&;) + Ax;, but does not work well

21



BCOS with decoupled weight decay

* minimize regularized E¢[f(x,&)] + 3|/x||?
e can apply BCOS with g; := V£ (x:,&;) + Ax;, but does not work well

e AdamW: Adam with decoupled weight decay [Loshchilov and Hutter, 2019]

my
Xt+1 = Xt — Ot _Oét>\Xt
\/ Ve + €
my

- (]. - Oét)\)Xt — Qi

V Vet €

where m; is momentum of g; = Vf(x, &), not including Ax;

21



BCOS with decoupled weight decay

minimize regularized E¢[f(x,&)] + 3|/x||?
can apply BCOS with g; := Vf(x:,&;) + Ax:, but does not work well

AdamW: Adam with decoupled weight decay [Loshchilov and Hutter, 2019]

my
Xt+1 = Xt - Oét _Oét>\Xt
\/ Ve + €
my

- (]. - O[t)\)Xt — Qi

V Vet €

where m; is momentum of g; = Vf(x, &), not including Ax;

BCOSW: apply the same change to BCOS

21



BCOSW with conditional estimator

Algorithm BCOSW-c

input: xo, {a¢}, f1,062€[0,1), e >0
m_y =g, Vo1=g
fort=0,1,2,... do
g = Vf(x:, &)
m; = Bime_1 + (1 — f1)g:
vi=(1—(1=5P)mi_;+(1—p5)g?

my

VVe T e

Xt+1 - (1 - Qt)\)xt — Ot

® decoupled weight decay

® apply similar change for
BCOSW-g, BCOSW-m

® BCOSW-c perform best in
experiments

22
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— 2nd moment estimators: EMA, conditional estimator
numerical experiments
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Experiments: varying smoothing factors

training GPT2 (126M) on OpenWebText dataset
® o = 0.002, warm up 2k iterations, then cosine decay (x0.01)

® weight decay A = 0.1

Validation loss

10
—— AdamW B 2 = (0.8, 0.95)
—— AdamW $15 = (0.9, 0.975)
8| AdamW B1 > = (0.95, 0.99)
8
7\
O |
5 L\
4
4 k 5
(0 X & &

Iteration

Validation loss

10

—

——BCOSW-c 8 =0.8
BCOSW-c 8 = 0.9
—— BCOSW-c 8 = 0.95

8

W A~ o3

0 2k 4k

6k

Sl

20k

40k 60k 80k
Iteration

Figure 1: Comparing AdamW and BCOSW-c with different momentum parameters.

100k
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Experiments: comparing -g, -m, -c variants

training GPT2 (126M) on OpenWebText dataset
® o = 0.002, warm up 2k iterations, then cosine decay (x0.01)

® weight decay A = 0.1

i ‘ 3.6
—— AdamW (4 2 = (0.9, 0.99)
2 6 ——BCOSW-g 5 =0.9 34
kel ——BCOSW-m 31 = 32 =0.9 ’
g —— BCOSW-c 8 =0.9
£ 5 b 32
%
> 4 3.0 B
3L ‘ 2.8 ‘ !
0 2k 4k 6k 8k 10k 0 20k 40k 60k 80k 100k
Iteration Iteration

Figure 2: Comparing AdamW and BCOSW. Left: first 10k iterations; Right: all 100k iterations.
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Experiments: loss vs Ir

training GPT2 (126M) on OpenWebText dataset
e warm up 2k iterations, then cosine decay (x0.01)
® weight decay A = 0.1

AdamW BCOSW-c
3 T T e e 3 T T T

Do

o)

t
T

o

©

>t
T

—e—train loss —e—train loss
—eo—test loss

—e—test loss

2.85

Cross-entropy loss
[\
Ne)
T

O

[09]

(@1

T

|
Cross-entropy loss
[\
NeJ
T

28 Ll Lol Lol 2‘8\\\\ Lol

1074 1073 1072 10~ 1073

amax amax

1072
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Experiments: decoupled weight decay

training GPT2 (126M) on OpenWebText dataset
® a = 0.002, warm up 2k iterations, then cosine decay (x0.01)

® weight decay A = 0.1

12 —— Adam A = 0.001 12 ——BCOS-c A =0.001
B — Adam A = 0.1 . — BCOS-¢c A =0.1
2 10 — AdamW X = 0.001 2 10 — BCOSW-c A = 0.001
= —— AdamW A = 0.1 = BCOSW-c A = 0.1
g 8 £ 8 P
< =]
= { =
§ 6 Il al uluu.‘u ; 6

4 4
0 20k 40k 60k 80k 100k 0 20k 40k 60k 80k 100k

Iteration Iteration

Figure 3: Left: Adam/ AdamW with 87 5 = (0.9, 0.99). Right: BCOS/BCOSW with 8 = 0.9.



Experiments: ResNet and Vision Transformer

e ResNet20 on CIFAR10 (using both cosine decay and step decay)

e vision transformer (ViT) on ImageNet (cosine decay)

Test precision at 1
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60 LL
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—— AdamW o = 1072 cos
—— AdamW o = 1072 step
——BCOSW-c & = 1072 cos
—— BCOSW-c a = 1073 step

50 100
Epoch
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Figure 4: Left: ResNet-20 on CIFAR10. Right: Vision Transformer on ImageNet.
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Outline

background and motivation
PBCOS: block coordinate optimal stepsizes

instantiations of BCOS

— search directions: stochastic gradient, momentum, preconditioned, ...

— 2nd moment estimators: EMA, conditional estimator
numerical experiments

convergence analysis
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Convergence analysis in two steps

® analysis of conceptual algorithm

1

o1
T ]

Xt-‘rl — (1 - atA)Xt - ﬁ}//t @ dt) Where

following classical SA literature in 1950’s
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Convergence analysis in two steps

® analysis of conceptual algorithm

1

" VEd?]

Xt+1 - (1 - O{tA)Xt - /'3/11- @ dt, Where ")/t =

following classical SA literature in 1950’s

® analysis of practical algorithm

Xep1 = (L — aeA)xe — v © dh, where Ve = Qi
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Convergence analysis in two steps

® analysis of conceptual algorithm

1

S
Vt t /—Et[df]

Xt-‘rl — (1 - atA)Xt - /’3;1- @ dt) Where

following classical SA literature in 1950’s

® analysis of practical algorithm

1
Ve + €

Xep1 = (L — aeA)xe — v © dh, where Ve = Qi

based on bounding the difference between expected updates

‘Et[”?t © de] = E[7: © dt” < Ct‘Et[:};t © dt]| + O(€) + O(Vary(wt))
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Classical aiming conditions

e classical stochastic approximation (SA) for solving E[g(x.,£)] =0

Xe+1 = Xt — Q¢ g(Xtaft)

aiming conditions critical in convergence analysis

— original SA paper [Robbins and Monro, 1951]
— multi-dimensional extension [Blum, 1954]
— many others ...

e simplified presentation (strong aiming condition) [Sakrison, 1966]

plix = x||* < (x = x., E[g(x. )]) < hllx — x.|?

31



Classical aiming conditions

e classical stochastic approximation (SA) for solving E[g(x.,£)] =0

Xe+1 = Xt — Q¢ g(Xtaft)

aiming conditions critical in convergence analysis

— original SA paper [Robbins and Monro, 1951]
— multi-dimensional extension [Blum, 1954]
— many others ...

e simplified presentation (strong aiming condition) [Sakrison, 1966]
plix = x||* < (x = x., E[g(x. )]) < hllx — x.|?
e stochastic optimization: minimize E[f(x, {)] and g(x,&) = Vf(x, &)

(strong) convexity + smoothness = (strong) aiming
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Aiming condition with coordinate-wise stepsizes

® expected update for conceptual BCOS

= ary/pr © sign(E¢[d:])

N S B A
Eth/t@dt]—Et[t ]— tm—

VE:[d7]

32



Aiming condition with coordinate-wise stepsizes

® expected update for conceptual BCOS

Etﬁt ®© dt] = E; [CHL]] =« M = Oét\/a © sign(Et[dt])

" VE[d?]

e Assumption A (Aiming):
— there exists x, € R" such that the following holds for all t > 0 almost surely

(xe — X, v/pr © sign(E¢[d]) + Axe) > Al[xe — x.|?

— if E¢[d;] = E[d¢|x;], then it suffices to have it for every x € R”
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Aiming condition with coordinate-wise stepsizes

expected update for conceptual BCOS

= a¢y/pe © sign(E.[d])

E:[V: © di] = E; [at dy ] _ E.[d:]

VEI@ | VR

Assumption A (Aiming):
— there exists x, € R" such that the following holds for all t > 0 almost surely

(xe — X, v/pr © sign(E¢[d]) + Axe) > Al[xe — x.|?
— if E¢[d:] = E[d;|x¢], then it suffices to have it for every x € R”
compare with classical aiming: one-sided bound only (due to p;x < 1)

assumes neither convexity nor smoothness, but overlapping with convexity
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Understanding the aiming condition

¢ block-coordinate weighted aiming (simplified version with A = 0)
<Xt — X, /Pt © Sign(Et[dt])> >0

. o . : E.[d: ]|
— sign of expected search direction weighted by SiF: p; s = [E:1d:]|

— less contribution from noisy directions

E.[llde x[]
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Understanding the aiming condition

¢ block-coordinate weighted aiming (simplified version with A = 0)
<Xt — X, /Pt © Sign(Et[dt])> >0

E.[d: «]|?
— sign of expected search direction weighted by SiF: p; s = %
t t,k

— less contribution from noisy directions

® aiming condition versus convexity
— full-block version recovers classical condition (which follows from convexity)
— can tolerate coordinate-wise nonconvexity

— cannot handle non-diagonal ill-conditioning (not surprising)
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Almost-sure convergence of conceptual BCOSW
e lemma: under Assumption A, 0 < oA < 1, and ¢, =n+ A2 ||x. [ +2) || x|,
Ee[llxes1 — x|°] < (1= @A) x — x|* + afc.,

thus for sufficiently small a,

Eelllxers—x]”] < lIxe—x.|?
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Almost-sure convergence of conceptual BCOSW
e lemma: under Assumption A, 0 < oA < 1, and ¢, =n+ A2 ||x. [ +2) || x|,
Ee[llxes1 — x|°] < (1= @A) x — x|* + afc.,

thus for sufficiently small a,

Eelllxers—x]”] < lIxe—x.|?

® theorem: suppose a; > 0 and 0 < a; A <1 for all t >0 and

oo o
E oy = 00, E Oé? < o0,
t=0 t=0

then Assumption A implies ||x; — x.|| — 0 almost surely

(by “almost supermargingale” lemma of [Robbins and Siegmund, 1971])
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Convergence rates of conceptual BCOSW

e corollary: suppose a; = a > 0 and a\ < 1 then Assumption A implies

a?c,

Efllx — x*] < (1= aX)* Ellxo —x["] + T-({d—a\?
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Convergence rates of conceptual BCOSW

e corollary: suppose a; = a > 0 and a\ < 1 then Assumption A implies

a?c,

Bl = x]"] < (1 =X Efla —x ] + == 155

e theorem: suppose a; = «/(t + 1) with 1/2 < a\ < 1, then Assumption A
implies for all t > 1

. <c,ﬁ + NE[||x0 — X*HZ]) 1 1
Ellx — x| < 20\ — 1 ?+O( )

(by applying Chung's lemma [Chung, 1954])
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Analysis of practical BCOSW

e Assumption B (Bias): there exist 7 > 0 and ¢ > 0 such that for all t > 0
|E[ve] — E¢[d?]| < TE([d?] + €
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Analysis of practical BCOSW

® Assumption B (Bias): there exist 7 > 0 and € > 0 such that for all t > 0
|E[ve] — E¢[d?]| < TE([d?] + €

® lemma: Assumptions B implies

E;Ec[l;]tz] _E, [ Vi’t+ 6] < \f% + O(e) + O(Vare(wvr)),
where
Ct:47’+37'2+8+47'+37'2< 1 N 1 )
8 16 SNR¢(ve +€) ~ /SNR:(dr)v/SNR¢(ve + €)

® SNR;(-) denotes conditional Signal-to-Noise Ratio, e.g.,

Et[dt]2 _ Pt
Vart(dt) 1-— Pt

SNRt(dt) =
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Almost sure convergence of practical BCOSW

e theorem (almoost sure convergence to a neighborhood of x,): suppose
— Assumptions A (Aiming) and B (Bias) hold
— ||d:|| bounded almost surely
—0<aA<1lforallt>0and > 2 a;=00and > oja? < oo
let & be the smallest constant such that, for all t > 0,
2¢e[lV/pell + O(€) + O(Vare(vr)) < A5,

limsup ||x; — x|| <6 a.s.
t—o00

then

(by Dvoretzky's theorem and extensions [Dvoretzky, 1956] [Venter, 1966])
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Almost sure convergence of practical BCOSW

e theorem (almoost sure convergence to a neighborhood of x,): suppose
— Assumptions A (Aiming) and B (Bias) hold
— ||d:|| bounded almost surely
—0<aA<1lforallt>0and > 2 a;=00and > oja? < oo

let & be the smallest constant such that, for all t > 0,

2¢e[[v/pell + O(e) + O(Vare(wr)) < Ad,

then )
limsup ||x; — x|| <6 a.s.
t—o00

(by Dvoretzky's theorem and extensions [Dvoretzky, 1956] [Venter, 1966])

e definition of c; reflect bias-variance tradeoff (simplified for 7 < 1)
1 . 1
SNRe(ve +€) * /SNR¢(d;)\/SNR¢(vt + €)

G < T+
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Bias-variance tradeoff

a general framework for convergence analysis
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Bias-variance tradeoff
a general framework for convergence analysis

e SGD with d; = g; or d; = m; (using common constant v, for all coordinates)
— high bias: |E;[v;] — E;[d?]| = |v — E.[d?]| for some constant v
— zero variance
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Bias-variance tradeoff

a general framework for convergence analysis

e SGD with d; = g; or d; = m; (using common constant v, for all coordinates)
— high bias: |E;[v;] — E[d?]| = |v — E;[d?]| for some constant v
— zero variance
® sign-SGD with d; = g; or d; = m, (effectively using v; = d?)
— zero bias: E;[v;] = E[d?]
— high variance: Var,(v;) = Var.(d;)
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Bias-variance tradeoff
a general framework for convergence analysis

e SGD with d; = g; or d; = m; (using common constant v, for all coordinates)
— high bias: |E;[v;] — E;[d?]| = |v — E.[d?]| for some constant v
— zero variance
® sign-SGD with d; = g; or d; = m, (effectively using v; = d?)
— zero bias: E;[v;] = E[d?]
— high variance: Var,(v;) = Var.(d;)
e Adam(W)
— bias: no closely form (better bound by assuming smoothness)
— variance: Var:(v;) = (1 — 3,)?Var:(g?)
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Bias-variance tradeoff
a general framework for convergence analysis

e SGD with d; = g; or d; = m; (using common constant v, for all coordinates)
— high bias: |E;[v;] — E;[d?]| = |v — E.[d?]| for some constant v
— zero variance
® sign-SGD with d; = g; or d; = m, (effectively using v; = d?)
— zero bias: E;[v;] = E[d?]
— high variance: Var,(v;) = Var.(d;)
e Adam(W)

— bias: no closely form (better bound by assuming smoothness)
— variance: Var:(v;) = (1 — 3,)?Var:(g?)
e BCOS(W)-c
- bias: Et[Vt] - Et[dtz] - 2/8(1 - 5)mt_1 (mt_]_ - Et[gt])
— variance: Var,(v;) = (1 — 8)*Var,(g?) (same as Adam 3, = 1—(1-7)?)
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Summary

BCOS: a family of block-coordinate optimal stepsizes

® basic idea: minimize expected distance of next iterate to an optimal point
® instantiations of BCOS
— search directions: gradient, momentum, preconditioned, spectral, ...
— 2nd moment estimators: EMA, conditional estimator
® convergence analysis

— two-step convergence analysis: from conceptual to practical

— SiF weighted aiming condition (neither convexity nor smoothness)

— decoupled weight decay: stronger convergence guarantees

— bias-variance tradeoff for practical algorithms (better with smoothness)

® more empirical study to understand full potential
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