
Stochastic Approximation with Block
Coordinate Optimal Stepsizes

Tao Jiang Lin Xiao
Cornell University Meta FAIR

CRM Workshop:
Optimization and Learning: Theory and Applications

Centre de Recherches Mathématiques, Montréal
May 27-30, 2025

Outline

• background and motivation

• BCOS: block coordinate optimal stepsizes

• instantiations of BCOS

– search directions: stochastic gradient, momentum, preconditioned, . . .
– 2nd moment estimators: EMA, conditional estimator

• numerical experiments

• convergence analysis

1

Stochastic optimization

stochastic optimization problem

minimize
x∈Rn

F (x) := Eξ[f (x , ξ)]

classical stochastic approximation method [Robbins and Monro, 1951]

xt+1 = xt − γt dt

• dt ∈ Rn: stochastic search direction

– stochastic gradient: dt = ∇f (xt , ξt)
– momentum (EMA): dt = βdt−1 + (1− β)∇f (xt , ξt)

• assumptions: convexity and/or smoothness

• convergence analysis: guarantees in expectation, rate of convergence

2

Stochastic optimization

stochastic optimization problem

minimize
x∈Rn

F (x) := Eξ[f (x , ξ)]

classical stochastic approximation method [Robbins and Monro, 1951]

xt+1 = xt − γt dt

• dt ∈ Rn: stochastic search direction

– stochastic gradient: dt = ∇f (xt , ξt)
– momentum (EMA): dt = βdt−1 + (1− β)∇f (xt , ξt)

• assumptions: convexity and/or smoothness

• convergence analysis: guarantees in expectation, rate of convergence

2

The myth about Adam and AdamW

Adam [Kingma and Ba, 2015] and AdamW [Loshchilov and Hutter, 2019]

xt+1 = xt −
αt√
vt + ϵ

⊙mt −αtλxt

where mt and vt are EMA of gt and g 2
t :

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

myths about Adam(W)
• role of 2nd moment: diagonal preconditioning or something else?
• choice of hyper-parameters (e.g., why β1 = 0.9 and β2 = 0.99 ?)
• why AdamW performs much better than Adam?
• what is a convincing convergence analysis (that can explain all of above)?

motivation: demystify Adam(W) and derive better/simpler algorithms

3

The myth about Adam and AdamW

Adam [Kingma and Ba, 2015] and AdamW [Loshchilov and Hutter, 2019]

xt+1 = xt −
αt√
vt + ϵ

⊙mt −αtλxt

where mt and vt are EMA of gt and g 2
t :

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

myths about Adam(W)
• role of 2nd moment: diagonal preconditioning or something else?
• choice of hyper-parameters (e.g., why β1 = 0.9 and β2 = 0.99 ?)
• why AdamW performs much better than Adam?
• what is a convincing convergence analysis (that can explain all of above)?

motivation: demystify Adam(W) and derive better/simpler algorithms

3

The myth about Adam and AdamW

Adam [Kingma and Ba, 2015] and AdamW [Loshchilov and Hutter, 2019]

xt+1 = xt −
αt√
vt + ϵ

⊙mt −αtλxt

where mt and vt are EMA of gt and g 2
t :

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

myths about Adam(W)
• role of 2nd moment: diagonal preconditioning or something else?
• choice of hyper-parameters (e.g., why β1 = 0.9 and β2 = 0.99 ?)
• why AdamW performs much better than Adam?
• what is a convincing convergence analysis (that can explain all of above)?

motivation: demystify Adam(W) and derive better/simpler algorithms
3

Stochastic Approximation

• find x∗ such that G (x∗) = 0 where G : Rn → Rn is defined as

G (x) := Eξ[g(x , ξ)]

• stochastic approximation [Robbins and Monro, 1951]

xt+1 = xt − αt g(xt , ξt)

• rich literature on convergence analysis
– convergence in mean-square sense, almost sure convergence
– rate of convergence (matching lower-bounds)

• aiming condition (weaker than convexity)〈
x − x∗, Eξ[g(x , ξ)]

〉
> 0 ∀ x ̸= x∗

• BCOS: a general framework for algorithm design and analysis
– block-coordinate weighted aiming (neither convexity nor smoothness)
– almost sure convergence (leveraging classic results in 1950’s)

4

Stochastic Approximation

• find x∗ such that G (x∗) = 0 where G : Rn → Rn is defined as

G (x) := Eξ[g(x , ξ)]

• stochastic approximation [Robbins and Monro, 1951]

xt+1 = xt − αt g(xt , ξt)

• rich literature on convergence analysis
– convergence in mean-square sense, almost sure convergence
– rate of convergence (matching lower-bounds)

• aiming condition (weaker than convexity)〈
x − x∗, Eξ[g(x , ξ)]

〉
> 0 ∀ x ̸= x∗

• BCOS: a general framework for algorithm design and analysis
– block-coordinate weighted aiming (neither convexity nor smoothness)
– almost sure convergence (leveraging classic results in 1950’s)

4

Stochastic Approximation

• find x∗ such that G (x∗) = 0 where G : Rn → Rn is defined as

G (x) := Eξ[g(x , ξ)]

• stochastic approximation [Robbins and Monro, 1951]

xt+1 = xt − αt g(xt , ξt)

• rich literature on convergence analysis
– convergence in mean-square sense, almost sure convergence
– rate of convergence (matching lower-bounds)

• aiming condition (weaker than convexity)〈
x − x∗, Eξ[g(x , ξ)]

〉
> 0 ∀ x ̸= x∗

• BCOS: a general framework for algorithm design and analysis
– block-coordinate weighted aiming (neither convexity nor smoothness)
– almost sure convergence (leveraging classic results in 1950’s)

4

Outline

• background and motivation

• BCOS: block coordinate optimal stepsizes

• instantiations of BCOS

– search directions: stochastic gradient, momentum, preconditioned, . . .
– 2nd moment estimators: EMA, conditional estimator

• numerical experiments

• convergence analysis

5

A general form of stochastic approximation (SA)

SA with block-coordinate stepsizes

xt+1,k = xt,k − γt,kdt,k , k = 1, . . . ,m

• block partition: xt,k , dt,k ∈ Rnk for k = 1, . . . ,m, with
∑m

i=1 nk = n

• each block share common stepsize γt,k > 0 for each k = 1, . . . ,m

• full-vector notation
xt+1 = xt − st ⊙ dt

where st = [st,1, . . . , st,m] ∈ Rn with st,k = γt,k1nk ∈ Rnk

examples of search direction dt ∈ Rn

• stochastic gradient: dt = ∇f (xt , ξt)

• stochastic momentum: dt = βdt−1 + (1− β)∇f (xt , ξt)

• can also work with preconditioned directions and Muon

6

A general form of stochastic approximation (SA)

SA with block-coordinate stepsizes

xt+1,k = xt,k − γt,kdt,k , k = 1, . . . ,m

• block partition: xt,k , dt,k ∈ Rnk for k = 1, . . . ,m, with
∑m

i=1 nk = n

• each block share common stepsize γt,k > 0 for each k = 1, . . . ,m

• full-vector notation
xt+1 = xt − st ⊙ dt

where st = [st,1, . . . , st,m] ∈ Rn with st,k = γt,k1nk ∈ Rnk

examples of search direction dt ∈ Rn

• stochastic gradient: dt = ∇f (xt , ξt)

• stochastic momentum: dt = βdt−1 + (1− β)∇f (xt , ξt)

• can also work with preconditioned directions and Muon
6

Expected distance to an optimal point

distance of xt+1 to an optimal point x∗

∥xt+1 − x∗∥2 = ∥xt − st ⊙ dt − x∗∥2

= ∥xt − x∗∥2 − 2⟨xt − x∗, st ⊙ dt⟩+ ∥st ⊙ dt∥2

= ∥xt − x∗∥2 +
m∑

k=1

(
−2γt,k⟨xt,k − x∗,k , dt,k⟩+ γ2

t,k∥dt,k∥2
)

conditional expectation

Et [·] := E[·|x0, d0, x1, d1, . . . , dt−1, xt]

expected distance

Et

[
∥xt+1−x∗∥2

]
= ∥xt−x∗∥2+

m∑
k=1

(
−2γt,k

〈
xt,k−x∗,k , Et [dt,k]

〉
+γ2

t,kEt

[
∥dt,k∥2

])

7

Expected distance to an optimal point

distance of xt+1 to an optimal point x∗

∥xt+1 − x∗∥2 = ∥xt − st ⊙ dt − x∗∥2

= ∥xt − x∗∥2 − 2⟨xt − x∗, st ⊙ dt⟩+ ∥st ⊙ dt∥2

= ∥xt − x∗∥2 +
m∑

k=1

(
−2γt,k⟨xt,k − x∗,k , dt,k⟩+ γ2

t,k∥dt,k∥2
)

conditional expectation

Et [·] := E[·|x0, d0, x1, d1, . . . , dt−1, xt]

expected distance

Et

[
∥xt+1−x∗∥2

]
= ∥xt−x∗∥2+

m∑
k=1

(
−2γt,k

〈
xt,k−x∗,k , Et [dt,k]

〉
+γ2

t,kEt

[
∥dt,k∥2

])
7

Inspiration from Polyak stepsize

• (sub)gradient method for convex optimization: xt+1 = xt − γt∇f (xt)

• distance of xt+1 to an optimal point x∗

∥xt+1 − x∗∥2 = ∥xt − γt∇f (xt)− x∗∥2

= ∥xt − x∗∥2 − 2γt∇f (xt)
T (xt − x∗) + γ2

t ∥∇f (xt)∥2

(by convexity) ≤ ∥xt − x∗∥2 − 2γk
(
f (xt)− f ⋆

)
+ γ2

t ∥∇f (xt)∥2

• choose γt to minimize upper bound on ∥xt+1 − x∗∥2

γ̂t =
f (xt)− f ⋆

∥∇f (xt)∥2

• limitations

– requires convexity (but can derive similar stepsizes using smoothness)
– do not have access of f ⋆ in general (and f (xt) in stochastic setting)

8

Inspiration from Polyak stepsize

• (sub)gradient method for convex optimization: xt+1 = xt − γt∇f (xt)

• distance of xt+1 to an optimal point x∗

∥xt+1 − x∗∥2 = ∥xt − γt∇f (xt)− x∗∥2

= ∥xt − x∗∥2 − 2γt∇f (xt)
T (xt − x∗) + γ2

t ∥∇f (xt)∥2

(by convexity) ≤ ∥xt − x∗∥2 − 2γk
(
f (xt)− f ⋆

)
+ γ2

t ∥∇f (xt)∥2

• choose γt to minimize upper bound on ∥xt+1 − x∗∥2

γ̂t =
f (xt)− f ⋆

∥∇f (xt)∥2

• limitations

– requires convexity (but can derive similar stepsizes using smoothness)
– do not have access of f ⋆ in general (and f (xt) in stochastic setting)

8

Inspiration from Polyak stepsize

• (sub)gradient method for convex optimization: xt+1 = xt − γt∇f (xt)

• distance of xt+1 to an optimal point x∗

∥xt+1 − x∗∥2 = ∥xt − γt∇f (xt)− x∗∥2

= ∥xt − x∗∥2 − 2γt∇f (xt)
T (xt − x∗) + γ2

t ∥∇f (xt)∥2

(by convexity) ≤ ∥xt − x∗∥2 − 2γk
(
f (xt)− f ⋆

)
+ γ2

t ∥∇f (xt)∥2

• choose γt to minimize upper bound on ∥xt+1 − x∗∥2

γ̂t =
f (xt)− f ⋆

∥∇f (xt)∥2

• limitations

– requires convexity (but can derive similar stepsizes using smoothness)
– do not have access of f ⋆ in general (and f (xt) in stochastic setting)

8

Block coordinate optimal stepsizes (BCOS)

choose γt,k minimize expected distance of xt+1 from x∗

Et

[
∥xt+1−x∗∥2

]
= ∥xt−x∗∥2+

m∑
k=1

(
−2γt,k

〈
xt,k−x∗,k , Et [dt,k]

〉
+γ2

t,kEt

[
∥dt,k∥2

])
block-coordinate optimal stepsizes

γ̂t,k =

〈
xt,k − x∗,k , Et [dt,k]

〉
Et [∥dt,k∥2]

, k = 1, . . . ,m

obviously, does not work in practice

• do not have access to x∗
• cannot compute Et [·] precisely

9

Block coordinate optimal stepsizes (BCOS)

choose γt,k minimize expected distance of xt+1 from x∗

Et

[
∥xt+1−x∗∥2

]
= ∥xt−x∗∥2+

m∑
k=1

(
−2γt,k

〈
xt,k−x∗,k , Et [dt,k]

〉
+γ2

t,kEt

[
∥dt,k∥2

])
block-coordinate optimal stepsizes

γ̂t,k =

〈
xt,k − x∗,k , Et [dt,k]

〉
Et [∥dt,k∥2]

, k = 1, . . . ,m

obviously, does not work in practice

• do not have access to x∗
• cannot compute Et [·] precisely

9

Simplify optimal stepsize rule

γ̂t,k =
⟨xt,k − x∗,k , Et [dt,k]⟩

Et [∥dt,k∥2]
• absorb quantities related to x∗ into tunable parameters αt,k〈

xt,k − x∗,k , Et [dt,k]
〉
= ∥xt,k − x∗,k∥∥Et [dt,k]∥ cos θt,k
≈ αt,k∥Et [dt,k]∥

restrict αt,k > 0: being “optimistic” that ⟨xt,k − x∗,k ,Et [dt,k]⟩ > 0

• use a single αt > 0

γ̃t,k = αt
∥Et [dt,k]∥
Et [∥dt,k∥2]

– assuming αt,k similar (better to exploit block-wise structure if possible)

– stepsize schedule: αt should decrease as E[∥xt − x∗∥] becomes small

10

Simplify optimal stepsize rule

γ̂t,k =
⟨xt,k − x∗,k , Et [dt,k]⟩

Et [∥dt,k∥2]
• absorb quantities related to x∗ into tunable parameters αt,k〈

xt,k − x∗,k , Et [dt,k]
〉
= ∥xt,k − x∗,k∥∥Et [dt,k]∥ cos θt,k
≈ αt,k∥Et [dt,k]∥

restrict αt,k > 0: being “optimistic” that ⟨xt,k − x∗,k ,Et [dt,k]⟩ > 0

• use a single αt > 0

γ̃t,k = αt
∥Et [dt,k]∥
Et [∥dt,k∥2]

– assuming αt,k similar (better to exploit block-wise structure if possible)

– stepsize schedule: αt should decrease as E[∥xt − x∗∥] becomes small
10

Approximate the expectations

γ̃t,k = αt
∥Et [dt,k]∥
Et [∥dt,k∥2]

• approximate Et [·] using exponential moving average (EMA)

ut,k = βut−1,k + (1− β)dt,k

vt,k = βvt−1,k + (1− β)∥dt,k∥2

• practical block-coordinate stepsize

γt,k = αt
∥ut,k∥
vt,k + ϵ

– ut,k ∈ Rnk and vt,k ∈ R+: mean and 2nd-moment estimators respectively
– ϵ > 0 on denominator: avoid numerical instability when vt,k too small

problem: ratio of two EMA estimators can be volatile

11

Approximate the expectations

γ̃t,k = αt
∥Et [dt,k]∥
Et [∥dt,k∥2]

• approximate Et [·] using exponential moving average (EMA)

ut,k = βut−1,k + (1− β)dt,k

vt,k = βvt−1,k + (1− β)∥dt,k∥2

• practical block-coordinate stepsize

γt,k = αt
∥ut,k∥
vt,k + ϵ

– ut,k ∈ Rnk and vt,k ∈ R+: mean and 2nd-moment estimators respectively
– ϵ > 0 on denominator: avoid numerical instability when vt,k too small

problem: ratio of two EMA estimators can be volatile

11

Further simplfication

• define signal fraction (SiF)

ρt,k =
∥Et [dt,k]∥2

Et [∥dt,k∥2]
=

∥Et [dt,k]∥2

∥Et [dt,k]∥2 + Var(dt,k)
∈ [0, 1]

• decomposition of stepsize rule (keeping scaling-invariance)

γ̃t,k = αt

√
∥Et [dt,k]∥2
Et [∥dt,k∥2]

1√
Et [∥dt,k∥2]

= αt
√
ρt,k

1√
Et [∥dt,k∥2]

• approximate 2nd-moment with EMA

γ̃t,k = α′
t

1√
Et [d2

t,k]
=⇒ γt,k = α′

t

1
√
vt,k + ϵ

– assimilate effect of ρt,k into α′
t together with ∥xt,k − x∗,k∥ cos(∡)

– only one EMA estimator on denominator (under square-root)

12

Further simplfication

• define signal fraction (SiF)

ρt,k =
∥Et [dt,k]∥2

Et [∥dt,k∥2]
=

∥Et [dt,k]∥2

∥Et [dt,k]∥2 + Var(dt,k)
∈ [0, 1]

• decomposition of stepsize rule (keeping scaling-invariance)

γ̃t,k = αt

√
∥Et [dt,k]∥2
Et [∥dt,k∥2]

1√
Et [∥dt,k∥2]

= αt
√
ρt,k

1√
Et [∥dt,k∥2]

• approximate 2nd-moment with EMA

γ̃t,k = α′
t

1√
Et [d2

t,k]
=⇒ γt,k = α′

t

1
√
vt,k + ϵ

– assimilate effect of ρt,k into α′
t together with ∥xt,k − x∗,k∥ cos(∡)

– only one EMA estimator on denominator (under square-root)
12

Outline

• background and motivation

• PBCOS: block coordinate optimal stepsizes

• instantiations of BCOS

– search directions: stochastic gradient, momentum, preconditioned, . . .
– 2nd moment estimators: EMA, conditional estimator

• numerical experiments

• convergence analysis

13

Instantiations of BCOS

focus on single-coordinate blocks (element-wise arithmetic)

vt = βvt−1 + (1− β)d2
t

xt+1 = xt − αt
dt√
vt + ϵ

• search direction dt
– stochastic gradient: gt = ∇f (xt , ξt)
– stochastic momentum: mt = βdt−1 + (1− β)gt

• 2nd-moment estimator vt
– EMA estimator: vt = β′vt−1 + (1− β′)d2

t

– conditional estimator when dt = mt

• BCOS with decoupled weight decay

14

Instantiations of BCOS

focus on single-coordinate blocks (element-wise arithmetic)

vt = βvt−1 + (1− β)d2
t

xt+1 = xt − αt
dt√
vt + ϵ

• search direction dt
– stochastic gradient: gt = ∇f (xt , ξt)
– stochastic momentum: mt = βdt−1 + (1− β)gt

• 2nd-moment estimator vt
– EMA estimator: vt = β′vt−1 + (1− β′)d2

t

– conditional estimator when dt = mt

• BCOS with decoupled weight decay

14

BCOS with stochastic gradient as search direction

Algorithm BCOS-g

input: x0, {αt}t≥0, β ∈ [0, 1), ϵ > 0

v−1 = g 2
0

for t = 0, 1, 2, . . . do

gt = ∇f (xt , ξt)

vt = βvt−1 + (1− β)g 2
t

xt+1 = xt − αt
gt√
vt + ϵ

• same as RMSprop
[Tieleman and Hinton, 2012]

• special case: β = 0 and ϵ = 0

xt+1 = xt − αtsign(gt)

(sign-SGD method)

15

BCOS with momentum as search direction

Algorithm BCOS-m

input: x0, {αt}, β1, β2 ∈ [0, 1), ϵ > 0

m−1 = g0, v−1 = g 2
0

for t = 0, 1, 2, . . . do

gt = ∇f (xt , ξt)

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)m
2
t

xt+1 = xt − αt
mt√
vt + ϵ

• two smoothing factors β1, β2

– can choose independently
– β1=β2 works well in practice

• Adam: replace m2
t by g 2

t

– mismatch between direction
and 2nd moment estimator

– need to compensate with
larger β2

(e.g., β1 = 0.9, β2 = 0.99)

16

BCOS with momentum as search direction

Algorithm BCOS-m

input: x0, {αt}, β1, β2 ∈ [0, 1), ϵ > 0

m−1 = g0, v−1 = g 2
0

for t = 0, 1, 2, . . . do

gt = ∇f (xt , ξt)

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)m
2
t

xt+1 = xt − αt
mt√
vt + ϵ

• two smoothing factors β1, β2

– can choose independently
– β1=β2 works well in practice

• Adam: replace m2
t by g 2

t

– mismatch between direction
and 2nd moment estimator

– need to compensate with
larger β2

(e.g., β1 = 0.9, β2 = 0.99)

16

BCOS with conditional estimator

• notice conditional expectation in γ̃t,k =
αt√
Et [d2

t]

• exploit structure when dt = mt :

Et

[
m2

t

]
= Et

[
(βmt−1 + (1− β)gt)

2
]

= β2Et [m
2
t−1] + 2β(1− β)Et [mt−1 ⊙ gt] + (1− β)2Et [g

2
t]

= β2m2
t−1 + 2β(1− β)mt−1 ⊙ Et [gt] + (1− β)2Et [g

2
t]

– approximate Et [gt] with mt

– approximate Et [g
2
t] with g 2

t (coefficient (1− β)2 very small in practice)

• resulting 2nd-moment estimator

vt = β2m2
t−1 + 2β(1− β)mt−1 ⊙mt + (1− β)2g 2

t

17

BCOS with conditional estimator

• notice conditional expectation in γ̃t,k =
αt√
Et [d2

t]
• exploit structure when dt = mt :

Et

[
m2

t

]
= Et

[
(βmt−1 + (1− β)gt)

2
]

= β2Et [m
2
t−1] + 2β(1− β)Et [mt−1 ⊙ gt] + (1− β)2Et [g

2
t]

= β2m2
t−1 + 2β(1− β)mt−1 ⊙ Et [gt] + (1− β)2Et [g

2
t]

– approximate Et [gt] with mt

– approximate Et [g
2
t] with g 2

t (coefficient (1− β)2 very small in practice)

• resulting 2nd-moment estimator

vt = β2m2
t−1 + 2β(1− β)mt−1 ⊙mt + (1− β)2g 2

t

17

BCOS with conditional estimator

• notice conditional expectation in γ̃t,k =
αt√
Et [d2

t]
• exploit structure when dt = mt :

Et

[
m2

t

]
= Et

[
(βmt−1 + (1− β)gt)

2
]

= β2Et [m
2
t−1] + 2β(1− β)Et [mt−1 ⊙ gt] + (1− β)2Et [g

2
t]

= β2m2
t−1 + 2β(1− β)mt−1 ⊙ Et [gt] + (1− β)2Et [g

2
t]

– approximate Et [gt] with mt

– approximate Et [g
2
t] with g 2

t (coefficient (1− β)2 very small in practice)

• resulting 2nd-moment estimator

vt = β2m2
t−1 + 2β(1− β)mt−1 ⊙mt + (1− β)2g 2

t

17

BCOS with conditional estimator

• notice conditional expectation in γ̃t,k =
αt√
Et [d2

t]
• exploit structure when dt = mt :

Et

[
m2

t

]
= Et

[
(βmt−1 + (1− β)gt)

2
]

= β2Et [m
2
t−1] + 2β(1− β)Et [mt−1 ⊙ gt] + (1− β)2Et [g

2
t]

= β2m2
t−1 + 2β(1− β)mt−1 ⊙ Et [gt] + (1− β)2Et [g

2
t]

– approximate Et [gt] with mt

– approximate Et [g
2
t] with g 2

t (coefficient (1− β)2 very small in practice)

• resulting 2nd-moment estimator

vt = β2m2
t−1 + 2β(1− β)mt−1 ⊙mt + (1− β)2g 2

t

17

BCOS with conditional estimator

Algorithm BCOS-c (ugly version)

input: x0, {αt}, β ∈ [0, 1), ϵ > 0

m−1 = g0, v−1 = g 2
0

for t = 0, 1, 2, . . . do

gt = ∇f (xt , ξt)

mt = βmt−1 + (1− β)gt

vt = β2m2
t−1+2β(1−β)mt−1⊙mt +(1−β)2g 2

t

xt+1 = xt − αt
mt√
vt + ϵ

• works well in practice!

• fewer optimizer state
(do not store vt−1)

• fewer hyper-parameters
(one smoothing factor)

• but it looks ugly!

18

BCOS with conditional estimator

Algorithm BCOS-c (ugly version)

input: x0, {αt}, β ∈ [0, 1), ϵ > 0

m−1 = g0, v−1 = g 2
0

for t = 0, 1, 2, . . . do

gt = ∇f (xt , ξt)

mt = βmt−1 + (1− β)gt

vt = β2m2
t−1+2β(1−β)mt−1⊙mt +(1−β)2g 2

t

xt+1 = xt − αt
mt√
vt + ϵ

• works well in practice!

• fewer optimizer state
(do not store vt−1)

• fewer hyper-parameters
(one smoothing factor)

• but it looks ugly!

18

BCOS with conditional estimator

• notice conditional expectation in γ̃t,k =
αt√
Et [d2

t]
• exploit structure when dt = mt :

Et

[
m2

t

]
= Et

[
(βmt−1 + (1− β)gt)

2
]

= β2Et [m
2
t−1] + 2β(1− β)Et [mt−1 ⊙ gt] + (1− β)2Et [g

2
t]

= β2m2
t−1 + 2β(1− β)mt−1 ⊙ Et [gt] + (1− β)2Et [g

2
t]

– approximate Et [gt] with ��HHmt → mt−1

– approximate Et [g
2
t] with g 2

t (coefficient (1− β)2 very small in practice)

• resulting 2nd-moment estimator

vt =
(
1− (1− β)2

)
m2

t−1 + (1− β)2g 2
t

memoryless “EMA” form: vt = β′m2
t−1 + (1− β′)g 2

t with β′ = 1− (1− β)2

19

BCOS with conditional estimator

• notice conditional expectation in γ̃t,k =
αt√
Et [d2

t]
• exploit structure when dt = mt :

Et

[
m2

t

]
= Et

[
(βmt−1 + (1− β)gt)

2
]

= β2Et [m
2
t−1] + 2β(1− β)Et [mt−1 ⊙ gt] + (1− β)2Et [g

2
t]

= β2m2
t−1 + 2β(1− β)mt−1 ⊙ Et [gt] + (1− β)2Et [g

2
t]

– approximate Et [gt] with ��HHmt → mt−1

– approximate Et [g
2
t] with g 2

t (coefficient (1− β)2 very small in practice)

• resulting 2nd-moment estimator

vt =
(
1− (1− β)2

)
m2

t−1 + (1− β)2g 2
t

memoryless “EMA” form: vt = β′m2
t−1 + (1− β′)g 2

t with β′ = 1− (1− β)2

19

BCOS with conditional estimator

• notice conditional expectation in γ̃t,k =
αt√
Et [d2

t]
• exploit structure when dt = mt :

Et

[
m2

t

]
= Et

[
(βmt−1 + (1− β)gt)

2
]

= β2Et [m
2
t−1] + 2β(1− β)Et [mt−1 ⊙ gt] + (1− β)2Et [g

2
t]

= β2m2
t−1 + 2β(1− β)mt−1 ⊙ Et [gt] + (1− β)2Et [g

2
t]

– approximate Et [gt] with ��HHmt → mt−1

– approximate Et [g
2
t] with g 2

t (coefficient (1− β)2 very small in practice)

• resulting 2nd-moment estimator

vt =
(
1− (1− β)2

)
m2

t−1 + (1− β)2g 2
t

memoryless “EMA” form: vt = β′m2
t−1 + (1− β′)g 2

t with β′ = 1− (1− β)2

19

BCOS with conditional estimator

Algorithm BCOS-c

input: x0, {αt}, β ∈ [0, 1), ϵ > 0

m−1 = g0, v−1 = g 2
0

for t = 0, 1, 2, . . . do

gt = ∇f (xt , ξt)

mt = βmt−1 + (1− β)gt

vt =
(
1− (1− β)2

)
m2

t−1 + (1− β)2g 2
t

xt+1 = xt − αt
mt√
vt + ϵ

• fewer optimizer state
(do not store vt−1)

• fewer hyper-parameters
(one smoothing factor)

• and it looks beautiful

compare with Adam

• replace vt−1 with m2
t−1

• explains β2 ≈ 1− (1− β1)
2

20

BCOS with conditional estimator

Algorithm BCOS-c

input: x0, {αt}, β ∈ [0, 1), ϵ > 0

m−1 = g0, v−1 = g 2
0

for t = 0, 1, 2, . . . do

gt = ∇f (xt , ξt)

mt = βmt−1 + (1− β)gt

vt =
(
1− (1− β)2

)
m2

t−1 + (1− β)2g 2
t

xt+1 = xt − αt
mt√
vt + ϵ

• fewer optimizer state
(do not store vt−1)

• fewer hyper-parameters
(one smoothing factor)

• and it looks beautiful

compare with Adam

• replace vt−1 with m2
t−1

• explains β2 ≈ 1− (1− β1)
2

20

BCOS with decoupled weight decay

• minimize regularized Eξ[f (x , ξ)] +
λ
2
∥x∥2

• can apply BCOS with gt := ∇f (xt , ξt) + λxt , but does not work well

• AdamW: Adam with decoupled weight decay [Loshchilov and Hutter, 2019]

xt+1 = xt − αt
mt√
vt + ϵ

−αtλxt

= (1− αtλ)xt − αt
mt√
vt + ϵ

where mt is momentum of gt = ∇f (xt , ξt), not including λxt

• BCOSW: apply the same change to BCOS

21

BCOS with decoupled weight decay

• minimize regularized Eξ[f (x , ξ)] +
λ
2
∥x∥2

• can apply BCOS with gt := ∇f (xt , ξt) + λxt , but does not work well

• AdamW: Adam with decoupled weight decay [Loshchilov and Hutter, 2019]

xt+1 = xt − αt
mt√
vt + ϵ

−αtλxt

= (1− αtλ)xt − αt
mt√
vt + ϵ

where mt is momentum of gt = ∇f (xt , ξt), not including λxt

• BCOSW: apply the same change to BCOS

21

BCOS with decoupled weight decay

• minimize regularized Eξ[f (x , ξ)] +
λ
2
∥x∥2

• can apply BCOS with gt := ∇f (xt , ξt) + λxt , but does not work well

• AdamW: Adam with decoupled weight decay [Loshchilov and Hutter, 2019]

xt+1 = xt − αt
mt√
vt + ϵ

−αtλxt

= (1− αtλ)xt − αt
mt√
vt + ϵ

where mt is momentum of gt = ∇f (xt , ξt), not including λxt

• BCOSW: apply the same change to BCOS

21

BCOSW with conditional estimator

Algorithm BCOSW-c

input: x0, {αt}, β1, β2 ∈ [0, 1), ϵ > 0

m−1 = g0, v−1 = g 2
0

for t = 0, 1, 2, . . . do

gt = ∇f (xt , ξt)

mt = β1mt−1 + (1− β1)gt

vt =
(
1− (1− β)2

)
m2

t−1 + (1− β)2g 2
t

xt+1 = (1− αtλ)xt − αt
mt√
vt + ϵ

• decoupled weight decay

• apply similar change for
BCOSW-g, BCOSW-m

• BCOSW-c perform best in
experiments

22

Outline

• background and motivation

• BCOS: block coordinate optimal stepsizes

• instantiations of BCOS

– search directions: stochastic gradient, momentum, preconditioned, . . .
– 2nd moment estimators: EMA, conditional estimator

• numerical experiments

• convergence analysis

23

Experiments: varying smoothing factors

training GPT2 (126M) on OpenWebText dataset
• α = 0.002, warm up 2k iterations, then cosine decay (×0.01)
• weight decay λ = 0.1

24

Experiments: comparing -g, -m, -c variants

training GPT2 (126M) on OpenWebText dataset

• α = 0.002, warm up 2k iterations, then cosine decay (×0.01)

• weight decay λ = 0.1

25

Experiments: loss vs lr

training GPT2 (126M) on OpenWebText dataset

• warm up 2k iterations, then cosine decay (×0.01)

• weight decay λ = 0.1

10−4 10−3 10−2
2.8

2.85

2.9

2.95

3

αmax

C
ro
ss
-e
n
tr
op

y
lo
ss

AdamW

train loss
test loss

10−4 10−3 10−2
2.8

2.85

2.9

2.95

3

αmax

C
ro
ss
-e
n
tr
op

y
lo
ss

BCOSW-c

train loss
test loss

26

Experiments: decoupled weight decay

training GPT2 (126M) on OpenWebText dataset

• α = 0.002, warm up 2k iterations, then cosine decay (×0.01)

• weight decay λ = 0.1

27

Experiments: ResNet and Vision Transformer

• ResNet20 on CIFAR10 (using both cosine decay and step decay)

• vision transformer (ViT) on ImageNet (cosine decay)

28

Outline

• background and motivation

• PBCOS: block coordinate optimal stepsizes

• instantiations of BCOS

– search directions: stochastic gradient, momentum, preconditioned, . . .
– 2nd moment estimators: EMA, conditional estimator

• numerical experiments

• convergence analysis

29

Convergence analysis in two steps

• analysis of conceptual algorithm

xt+1 = (1− αtλ)xt − γ̃t ⊙ dt , where γ̃t = αt
1√

Et [d2
t]

following classical SA literature in 1950’s

• analysis of practical algorithm

xt+1 = (1− αtλ)xt − γt ⊙ dt , where γt = αt
1√

vt + ϵ

based on bounding the difference between expected updates∣∣Et [γ̃t ⊙ dt]− Et [γt ⊙ dt]
∣∣ ≤ ct

∣∣Et [γ̃t ⊙ dt]
∣∣+O(ϵ) +O(Vart(vt))

30

Convergence analysis in two steps

• analysis of conceptual algorithm

xt+1 = (1− αtλ)xt − γ̃t ⊙ dt , where γ̃t = αt
1√

Et [d2
t]

following classical SA literature in 1950’s

• analysis of practical algorithm

xt+1 = (1− αtλ)xt − γt ⊙ dt , where γt = αt
1√

vt + ϵ

based on bounding the difference between expected updates∣∣Et [γ̃t ⊙ dt]− Et [γt ⊙ dt]
∣∣ ≤ ct

∣∣Et [γ̃t ⊙ dt]
∣∣+O(ϵ) +O(Vart(vt))

30

Convergence analysis in two steps

• analysis of conceptual algorithm

xt+1 = (1− αtλ)xt − γ̃t ⊙ dt , where γ̃t = αt
1√

Et [d2
t]

following classical SA literature in 1950’s

• analysis of practical algorithm

xt+1 = (1− αtλ)xt − γt ⊙ dt , where γt = αt
1√

vt + ϵ

based on bounding the difference between expected updates∣∣Et [γ̃t ⊙ dt]− Et [γt ⊙ dt]
∣∣ ≤ ct

∣∣Et [γ̃t ⊙ dt]
∣∣+O(ϵ) +O(Vart(vt))

30

Classical aiming conditions

• classical stochastic approximation (SA) for solving E[g(x∗, ξ)] = 0

xt+1 = xt − αt g(xt , ξt)

aiming conditions critical in convergence analysis

– original SA paper [Robbins and Monro, 1951]
– multi-dimensional extension [Blum, 1954]
– many others . . .

• simplified presentation (strong aiming condition) [Sakrison, 1966]

µ∥x − x∗∥2 ≤
〈
x − x∗,E[g(x , ξ)]

〉
≤ κ∥x − x∗∥2

• stochastic optimization: minimize E[f (x , ξ)] and g(x , ξ) = ∇f (x , ξ)

(strong) convexity + smoothness =⇒ (strong) aiming

31

Classical aiming conditions

• classical stochastic approximation (SA) for solving E[g(x∗, ξ)] = 0

xt+1 = xt − αt g(xt , ξt)

aiming conditions critical in convergence analysis

– original SA paper [Robbins and Monro, 1951]
– multi-dimensional extension [Blum, 1954]
– many others . . .

• simplified presentation (strong aiming condition) [Sakrison, 1966]

µ∥x − x∗∥2 ≤
〈
x − x∗,E[g(x , ξ)]

〉
≤ κ∥x − x∗∥2

• stochastic optimization: minimize E[f (x , ξ)] and g(x , ξ) = ∇f (x , ξ)

(strong) convexity + smoothness =⇒ (strong) aiming

31

Aiming condition with coordinate-wise stepsizes

• expected update for conceptual BCOS

Et [γ̃t ⊙ dt] = Et

[
αt

dt√
Et [d2

t]

]
= αt

Et [dt]√
Et [d2

t]
= αt

√
ρt ⊙ sign(Et [dt])

• Assumption A (Aiming):

– there exists x∗ ∈ Rn such that the following holds for all t ≥ 0 almost surely〈
xt − x∗,

√
ρt ⊙ sign(Et [dt]) + λxt

〉
≥ λ∥xt − x∗∥2

– if Et [dt] = E[dt |xt], then it suffices to have it for every x ∈ Rn

• compare with classical aiming: one-sided bound only (due to ρt,k ≤ 1)

• assumes neither convexity nor smoothness, but overlapping with convexity

32

Aiming condition with coordinate-wise stepsizes

• expected update for conceptual BCOS

Et [γ̃t ⊙ dt] = Et

[
αt

dt√
Et [d2

t]

]
= αt

Et [dt]√
Et [d2

t]
= αt

√
ρt ⊙ sign(Et [dt])

• Assumption A (Aiming):

– there exists x∗ ∈ Rn such that the following holds for all t ≥ 0 almost surely〈
xt − x∗,

√
ρt ⊙ sign(Et [dt]) + λxt

〉
≥ λ∥xt − x∗∥2

– if Et [dt] = E[dt |xt], then it suffices to have it for every x ∈ Rn

• compare with classical aiming: one-sided bound only (due to ρt,k ≤ 1)

• assumes neither convexity nor smoothness, but overlapping with convexity

32

Aiming condition with coordinate-wise stepsizes

• expected update for conceptual BCOS

Et [γ̃t ⊙ dt] = Et

[
αt

dt√
Et [d2

t]

]
= αt

Et [dt]√
Et [d2

t]
= αt

√
ρt ⊙ sign(Et [dt])

• Assumption A (Aiming):

– there exists x∗ ∈ Rn such that the following holds for all t ≥ 0 almost surely〈
xt − x∗,

√
ρt ⊙ sign(Et [dt]) + λxt

〉
≥ λ∥xt − x∗∥2

– if Et [dt] = E[dt |xt], then it suffices to have it for every x ∈ Rn

• compare with classical aiming: one-sided bound only (due to ρt,k ≤ 1)

• assumes neither convexity nor smoothness, but overlapping with convexity

32

Understanding the aiming condition

• block-coordinate weighted aiming (simplified version with λ = 0)〈
xt − x∗,

√
ρt ⊙ sign(Et [dt])

〉
≥ 0

– sign of expected search direction weighted by SiF: ρt,k =
∥Et [dt,k]∥2

Et [∥dt,k∥2]
– less contribution from noisy directions

• aiming condition versus convexity

– full-block version recovers classical condition (which follows from convexity)

– can tolerate coordinate-wise nonconvexity

– cannot handle non-diagonal ill-conditioning (not surprising)

33

Understanding the aiming condition

• block-coordinate weighted aiming (simplified version with λ = 0)〈
xt − x∗,

√
ρt ⊙ sign(Et [dt])

〉
≥ 0

– sign of expected search direction weighted by SiF: ρt,k =
∥Et [dt,k]∥2

Et [∥dt,k∥2]
– less contribution from noisy directions

• aiming condition versus convexity

– full-block version recovers classical condition (which follows from convexity)

– can tolerate coordinate-wise nonconvexity

– cannot handle non-diagonal ill-conditioning (not surprising)

33

Almost-sure convergence of conceptual BCOSW

• lemma: under Assumption A, 0 ≤ αtλ < 1, and c∗=n+λ2 ∥x∗∥2+2λ ∥x∗∥1,

Et

[
∥xt+1 − x∗∥2

]
≤ (1− αtλ)

2 ∥xt − x∗∥2 + α2
t c∗,

thus for sufficiently small αt ,

Et

[
∥xt+1−x∗∥2

]
≤ ∥xt−x∗∥2

• theorem: suppose αt ≥ 0 and 0 ≤ αtλ ≤ 1 for all t ≥ 0 and
∞∑
t=0

αt = ∞,

∞∑
t=0

α2
t < ∞,

then Assumption A implies ∥xt − x∗∥ → 0 almost surely

(by “almost supermargingale” lemma of [Robbins and Siegmund, 1971])

34

Almost-sure convergence of conceptual BCOSW

• lemma: under Assumption A, 0 ≤ αtλ < 1, and c∗=n+λ2 ∥x∗∥2+2λ ∥x∗∥1,

Et

[
∥xt+1 − x∗∥2

]
≤ (1− αtλ)

2 ∥xt − x∗∥2 + α2
t c∗,

thus for sufficiently small αt ,

Et

[
∥xt+1−x∗∥2

]
≤ ∥xt−x∗∥2

• theorem: suppose αt ≥ 0 and 0 ≤ αtλ ≤ 1 for all t ≥ 0 and
∞∑
t=0

αt = ∞,
∞∑
t=0

α2
t < ∞,

then Assumption A implies ∥xt − x∗∥ → 0 almost surely

(by “almost supermargingale” lemma of [Robbins and Siegmund, 1971])

34

Convergence rates of conceptual BCOSW

• corollary: suppose αt = α > 0 and αλ < 1 then Assumption A implies

E
[
∥xt − x∗∥2

]
≤ (1− αλ)2t E

[
∥x0 − x∗∥2

]
+

α2c∗
1− (1− αλ)2

• theorem: suppose αt = α/(t + 1) with 1/2 < αλ < 1, then Assumption A
implies for all t ≥ 1

E
[
∥xt − x∗∥2

]
≤

α2
(
c ′∗ + λ2E[∥x0 − x∗∥2]

)
2αλ− 1

1

t
+O

(
1

t2αλ

)
(by applying Chung’s lemma [Chung, 1954])

35

Convergence rates of conceptual BCOSW

• corollary: suppose αt = α > 0 and αλ < 1 then Assumption A implies

E
[
∥xt − x∗∥2

]
≤ (1− αλ)2t E

[
∥x0 − x∗∥2

]
+

α2c∗
1− (1− αλ)2

• theorem: suppose αt = α/(t + 1) with 1/2 < αλ < 1, then Assumption A
implies for all t ≥ 1

E
[
∥xt − x∗∥2

]
≤

α2
(
c ′∗ + λ2E[∥x0 − x∗∥2]

)
2αλ− 1

1

t
+O

(
1

t2αλ

)
(by applying Chung’s lemma [Chung, 1954])

35

Analysis of practical BCOSW

• Assumption B (Bias): there exist τ > 0 and ϵ > 0 such that for all t ≥ 0∣∣Et [vt]− Et [d
2
t]
∣∣ ≤ τEt [d

2
t] + ϵ

• lemma: Assumptions B implies∣∣∣∣∣ Et [dt]√
Et [d2

t]
− Et

[
dt√
vt + ϵ

]∣∣∣∣∣ ≤ ct

∣∣∣∣∣ Et [dt]√
Et [d2

t]

∣∣∣∣∣+O(ϵ) +O(Vart(vt)),

where

ct =
4τ + 3τ2

8
+

8 + 4τ + 3τ2

16

(
1

SNRt(vt + ϵ)
+

1√
SNRt(dt)

√
SNRt(vt + ϵ)

)

• SNRt(·) denotes conditional Signal-to-Noise Ratio, e.g.,

SNRt(dt) =
Et [dt]

2

Vart(dt)
=

ρt
1− ρt

36

Analysis of practical BCOSW

• Assumption B (Bias): there exist τ > 0 and ϵ > 0 such that for all t ≥ 0∣∣Et [vt]− Et [d
2
t]
∣∣ ≤ τEt [d

2
t] + ϵ

• lemma: Assumptions B implies∣∣∣∣∣ Et [dt]√
Et [d2

t]
− Et

[
dt√
vt + ϵ

]∣∣∣∣∣ ≤ ct

∣∣∣∣∣ Et [dt]√
Et [d2

t]

∣∣∣∣∣+O(ϵ) +O(Vart(vt)),

where

ct =
4τ + 3τ2

8
+

8 + 4τ + 3τ2

16

(
1

SNRt(vt + ϵ)
+

1√
SNRt(dt)

√
SNRt(vt + ϵ)

)

• SNRt(·) denotes conditional Signal-to-Noise Ratio, e.g.,

SNRt(dt) =
Et [dt]

2

Vart(dt)
=

ρt
1− ρt

36

Almost sure convergence of practical BCOSW

• theorem (almoost sure convergence to a neighborhood of x∗): suppose

– Assumptions A (Aiming) and B (Bias) hold

– ∥dt∥ bounded almost surely

– 0 ≤ αtλ ≤ 1 for all t ≥ 0 and
∑∞

t=0 αt = ∞ and
∑∞

t=0 α
2
t < ∞

let δ be the smallest constant such that, for all t ≥ 0,

2ct∥
√
ρt∥+O(ϵ) +O(Vart(vt)) ≤ λδ,

then
lim sup
t→∞

∥xt − x∗∥ ≤ δ a.s.

(by Dvoretzky’s theorem and extensions [Dvoretzky, 1956] [Venter, 1966])

• definition of ct reflect bias-variance tradeoff (simplified for τ < 1)

ct < τ +
1

SNRt(vt + ϵ)
+

1√
SNRt(dt)

√
SNRt(vt + ϵ)

37

Almost sure convergence of practical BCOSW

• theorem (almoost sure convergence to a neighborhood of x∗): suppose

– Assumptions A (Aiming) and B (Bias) hold

– ∥dt∥ bounded almost surely

– 0 ≤ αtλ ≤ 1 for all t ≥ 0 and
∑∞

t=0 αt = ∞ and
∑∞

t=0 α
2
t < ∞

let δ be the smallest constant such that, for all t ≥ 0,

2ct∥
√
ρt∥+O(ϵ) +O(Vart(vt)) ≤ λδ,

then
lim sup
t→∞

∥xt − x∗∥ ≤ δ a.s.

(by Dvoretzky’s theorem and extensions [Dvoretzky, 1956] [Venter, 1966])

• definition of ct reflect bias-variance tradeoff (simplified for τ < 1)

ct < τ +
1

SNRt(vt + ϵ)
+

1√
SNRt(dt)

√
SNRt(vt + ϵ)

37

Bias-variance tradeoff

a general framework for convergence analysis

• SGD with dt = gt or dt = mt (using common constant vt for all coordinates)

– high bias: |Et [vt]− Et [d
2
t]| = |v − Et [d

2
t]| for some constant v

– zero variance

• sign-SGD with dt = gt or dt = mt (effectively using vt = d2
t)

– zero bias: Et [vt] = E[d2
t]

– high variance: Vart(vt) = Vart(dt)

• Adam(W)

– bias: no closely form (better bound by assuming smoothness)
– variance: Vart(vt) = (1− β2)

2Vart(g
2
t)

• BCOS(W)-c

– bias: Et [vt]− Et [d
2
t] = 2β(1− β)mt−1

(
mt−1 − Et [gt]

)
– variance: Vart(vt) = (1− β)4Vart(g

2
t) (same as Adam β2 = 1−(1−β)2)

38

Bias-variance tradeoff

a general framework for convergence analysis

• SGD with dt = gt or dt = mt (using common constant vt for all coordinates)

– high bias: |Et [vt]− Et [d
2
t]| = |v − Et [d

2
t]| for some constant v

– zero variance

• sign-SGD with dt = gt or dt = mt (effectively using vt = d2
t)

– zero bias: Et [vt] = E[d2
t]

– high variance: Vart(vt) = Vart(dt)

• Adam(W)

– bias: no closely form (better bound by assuming smoothness)
– variance: Vart(vt) = (1− β2)

2Vart(g
2
t)

• BCOS(W)-c

– bias: Et [vt]− Et [d
2
t] = 2β(1− β)mt−1

(
mt−1 − Et [gt]

)
– variance: Vart(vt) = (1− β)4Vart(g

2
t) (same as Adam β2 = 1−(1−β)2)

38

Bias-variance tradeoff

a general framework for convergence analysis

• SGD with dt = gt or dt = mt (using common constant vt for all coordinates)

– high bias: |Et [vt]− Et [d
2
t]| = |v − Et [d

2
t]| for some constant v

– zero variance

• sign-SGD with dt = gt or dt = mt (effectively using vt = d2
t)

– zero bias: Et [vt] = E[d2
t]

– high variance: Vart(vt) = Vart(dt)

• Adam(W)

– bias: no closely form (better bound by assuming smoothness)
– variance: Vart(vt) = (1− β2)

2Vart(g
2
t)

• BCOS(W)-c

– bias: Et [vt]− Et [d
2
t] = 2β(1− β)mt−1

(
mt−1 − Et [gt]

)
– variance: Vart(vt) = (1− β)4Vart(g

2
t) (same as Adam β2 = 1−(1−β)2)

38

Bias-variance tradeoff

a general framework for convergence analysis

• SGD with dt = gt or dt = mt (using common constant vt for all coordinates)

– high bias: |Et [vt]− Et [d
2
t]| = |v − Et [d

2
t]| for some constant v

– zero variance

• sign-SGD with dt = gt or dt = mt (effectively using vt = d2
t)

– zero bias: Et [vt] = E[d2
t]

– high variance: Vart(vt) = Vart(dt)

• Adam(W)

– bias: no closely form (better bound by assuming smoothness)
– variance: Vart(vt) = (1− β2)

2Vart(g
2
t)

• BCOS(W)-c

– bias: Et [vt]− Et [d
2
t] = 2β(1− β)mt−1

(
mt−1 − Et [gt]

)
– variance: Vart(vt) = (1− β)4Vart(g

2
t) (same as Adam β2 = 1−(1−β)2)

38

Bias-variance tradeoff

a general framework for convergence analysis

• SGD with dt = gt or dt = mt (using common constant vt for all coordinates)

– high bias: |Et [vt]− Et [d
2
t]| = |v − Et [d

2
t]| for some constant v

– zero variance

• sign-SGD with dt = gt or dt = mt (effectively using vt = d2
t)

– zero bias: Et [vt] = E[d2
t]

– high variance: Vart(vt) = Vart(dt)

• Adam(W)

– bias: no closely form (better bound by assuming smoothness)
– variance: Vart(vt) = (1− β2)

2Vart(g
2
t)

• BCOS(W)-c

– bias: Et [vt]− Et [d
2
t] = 2β(1− β)mt−1

(
mt−1 − Et [gt]

)
– variance: Vart(vt) = (1− β)4Vart(g

2
t) (same as Adam β2 = 1−(1−β)2)

38

Summary

BCOS: a family of block-coordinate optimal stepsizes

• basic idea: minimize expected distance of next iterate to an optimal point

• instantiations of BCOS

– search directions: gradient, momentum, preconditioned, spectral, . . .
– 2nd moment estimators: EMA, conditional estimator

• convergence analysis

– two-step convergence analysis: from conceptual to practical
– SiF weighted aiming condition (neither convexity nor smoothness)
– decoupled weight decay: stronger convergence guarantees
– bias-variance tradeoff for practical algorithms (better with smoothness)

• more empirical study to understand full potential

39

References I

J. R. Blum. Multidimensional Stochastic Approximation Methods. The Annals of
Mathematical Statistics, 25(4):737 – 744, 1954. doi:
10.1214/aoms/1177728659. URL
https://doi.org/10.1214/aoms/1177728659.

K. L. Chung. On a stochastic approximation method. The Annals of
Mathematical Statistics, pages 463–483, 1954.

A. Dvoretzky. On stochastic approximation. In Proceedings of the Third Berkeley
Symposium on Mathematical Statistics and Probability, volume 1, pages
39–55. University of California Press, 1956.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
Proceedings of International Conference on Learning Representations (ICLR),
2015. arXiv:1412.6980.

40

https://doi.org/10.1214/aoms/1177728659

References II

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In
International Conference on Learning Representations (ICLR), 2019. URL
https://openreview.net/forum?id=Bkg6RiCqY7.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951.

H. Robbins and D. Siegmund. A convergence theorem for non negative almost
supermartingales and some applications. In J. S. Rustagi, editor, Optimizing
Methods in Statistics, pages 233–257. Academic Press, 1971. ISBN
978-0-12-604550-5. doi:
https://doi.org/10.1016/B978-0-12-604550-5.50015-8. URL https://www.

sciencedirect.com/science/article/pii/B9780126045505500158.

41

https://openreview.net/forum?id=Bkg6RiCqY7
https://www.sciencedirect.com/science/article/pii/B9780126045505500158
https://www.sciencedirect.com/science/article/pii/B9780126045505500158

References III

D. J. Sakrison. Stochastic approximation: A recursive method for solving
regression problems. In A. Balakrishnan, editor, Advances in Communication
Systems, volume 2, pages 51–106. Elsevier, 1966. doi:
https://doi.org/10.1016/B978-1-4832-2939-3.50008-9. URL https://www.

sciencedirect.com/science/article/pii/B9781483229393500089.

T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for
machine learning, 4(2):26–31, 2012.

J. H. Venter. On Dvoretzky Stochastic Approximation Theorems. The Annals of
Mathematical Statistics, 37(6):1534 – 1544, 1966. doi:
10.1214/aoms/1177699145. URL
https://doi.org/10.1214/aoms/1177699145.

42

https://www.sciencedirect.com/science/article/pii/B9781483229393500089
https://www.sciencedirect.com/science/article/pii/B9781483229393500089
https://doi.org/10.1214/aoms/1177699145

	References

