Stochastic Approximation with Block
Coordinate Optimal Stepsizes

Tao Jiang Lin Xiao
Cornell University ~ Meta FAIR

CRM Workshop:
Optimization and Learning: Theory and Applications

Centre de Recherches Mathématiques, Montréal
May 27-30, 2025

QOutline

background and motivation
BCOS: block coordinate optimal stepsizes

instantiations of BCOS

— search directions: stochastic gradient, momentum, preconditioned, ...
— 2nd moment estimators: EMA, conditional estimator

numerical experiments

convergence analysis

Stochastic optimization

stochastic optimization problem

minimize F(x) := E¢[f(x,)]

xER"
classical stochastic approximation method [Robbins and Monro, 1951]
Xe+1 = Xe — Ve dy

® d, € R": stochastic search direction

— stochastic gradient: d; = Vf(x, &)
— momentum (EMA): d; = fd;_1 + (1 — B)VF(x:, &)

Stochastic optimization

stochastic optimization problem

minimize F(x) := E¢[f(x,)]

xeR"

classical stochastic approximation method [Robbins and Monro, 1951]
Xe+1 = Xe — Ve dy

® d, € R": stochastic search direction

— stochastic gradient: d; = Vf(x, &)
— momentum (EMA): d; = fd;_1 + (1 — B)VF(x:, &)

® assumptions: convexity and/or smoothness

® convergence analysis: guarantees in expectation, rate of convergence

The myth about Adam and AdamW
Adam [Kingma and Ba, 2015] and AdamW [Loshchilov and Hutter, 2019]

at
Xt+1 = X¢ —
Ve + €

where m; and v; are EMA of g; and g,_?:

my = f1me_1 + (1 — P1)g:
Ve = Bavic1 + (1 — Bo)g?

O My — QX

The myth about Adam and AdamW
Adam [Kingma and Ba, 2015] and AdamW [Loshchilov and Hutter, 2019]

at
Xe41 = X — O my — arAx;
Ve + €

where m; and v; are EMA of g; and th:

my = Bime1 + (1 = B1)gt
ve = Bave1 + (1 — B2)g7
myths about Adam(W)

® role of 2nd moment: diagonal preconditioning or something else?
e choice of hyper-parameters (e.g., why $; = 0.9 and 3, = 0.997)
e why AdamW performs much better than Adam?

e what is a convincing convergence analysis (that can explain all of above)?

The myth about Adam and AdamW
Adam [Kingma and Ba, 2015] and AdamW [Loshchilov and Hutter, 2019]

at
Xe41 = Xp — O my — arAx;
Ve + €

where m; and v; are EMA of g; and gtz:

my = Bime1 + (1 = B1)gt
Ve = Bave1 + (1 — B2)g?
myths about Adam(W)

® role of 2nd moment: diagonal preconditioning or something else?

e choice of hyper-parameters (e.g., why $; = 0.9 and 3, = 0.997)
e why AdamW performs much better than Adam?

e what is a convincing convergence analysis (that can explain all of above)?

motivation: demystify Adam(W) and derive better/simpler algorithms

Stochastic Approximation
e find x. such that G(x.) = 0 where G : R" — R”" is defined as
G(X) = Eﬁ[g(xaf)]
e stochastic approximation [Robbins and Monro, 1951]

X4l = X¢ — Qi g(Xh ft)

Stochastic Approximation
find x, such that G(x.) = 0 where G : R” — R" is defined as
G(x) := Eelg(x,)]
stochastic approximation [Robbins and Monro, 1951]
Xey1 = Xe — e g(Xt, &t)
rich literature on convergence analysis

— convergence in mean-square sense, almost sure convergence
— rate of convergence (matching lower-bounds)

aiming condition (weaker than convexity)

(x = x, E¢[g(x,6)]) >0 Vx#x

Stochastic Approximation
find x, such that G(x.) = 0 where G : R” — R" is defined as
G(X) = Eﬁ[g(xaf)]
stochastic approximation [Robbins and Monro, 1951]

X4l = X¢ — Qi g(xt,&)

rich literature on convergence analysis
— convergence in mean-square sense, almost sure convergence
— rate of convergence (matching lower-bounds)

aiming condition (weaker than convexity)

(x = x, E¢[g(x,6)]) >0 Vx#x

BCOS: a general framework for algorithm design and analysis
— block-coordinate weighted aiming (neither convexity nor smoothness)
— almost sure convergence (leveraging classic results in 1950's)

QOutline

background and motivation
BCOS: block coordinate optimal stepsizes

instantiations of BCOS

— search directions: stochastic gradient, momentum, preconditioned, ...

— 2nd moment estimators: EMA, conditional estimator
numerical experiments

convergence analysis

A general form of stochastic approximation (SA)

SA with block-coordinate stepsizes

Xt—l—l,k :Xt7k _’Yt,kdt,k, k - 1,...,m
® block partition: x;x, d;x € R™ for k =1,...,m, with Y7 nx =n
® each block share common stepsize ;. , > 0 for each k =1,...,m

e full-vector notation
Xey1 = X — 5 © d;

where s; = [s;1,...,5:.m] € R” with s, = 741, € R™
) ; ; ,yv k

A general form of stochastic approximation (SA)
SA with block-coordinate stepsizes

Xt—l—l,k :XtJ(_’Yt,kdt,k, k - 1,...,m

® block partition: x;x, d;x € R™ for k =1,...,m, with Y7 nx =n
® each block share common stepsize ;. , > 0 for each k =1,...,m
e full-vector notation

Xt+1 = Xt — 5 O d;

where s; = [s;1,...,5:.m] € R” with s, = 741, € R™
) ; ; ,yv k

examples of search direction d; € R”
® stochastic gradient: dr = V£(xe, &)

e stochastic momentum: d; = Sdi_1 + (1 — B)VF (X, &)
® can also work with preconditioned directions and Muon

Expected distance to an optimal point

distance of x;,1 to an optimal point x,

Ixess = x]|* =[x — 5t © de — x|

= [Ixe — %[> = 2(x¢ — xs, 5: © dy) + |5t © |

m

= ||Xt _X*H Z 2’7tk Xtk — X ks dtk> +’7tk||dtkH)
k=1

Expected distance to an optimal point

distance of x;,1 to an optimal point x,

IXer1 — X [1? = [|xe — s © de — x.||?
= [Ixe — %[> = 2(x¢ — xs, 5: © dy) + |5t © |
:“Xt_X*H Z 2’7tk Xtk — X ks dtk>+7tkHdtkH)
k=1

conditional expectation
E:[] := E[|x0, do, X1, 1, ..., de_1, X]

expected distance

Et[HXt—i-l—X*H2] = HXt—X*Hz—i-Z(—2%,/(<Xt,k—X*7k, Et[dt,k]>+7§kEt|:Hdt,k”2})

Inspiration from Polyak stepsize
e (sub)gradient method for convex optimization: x, 1 = x; — 7:Vf(x;)
e distance of x;,1 to an optimal point x,

[xer1 — x:|1? = [[xe — %V F(xe) — x|)?
=[x = x> = 29V (xe) T (xe — x) + 72 VF(x)[?
(by convexity) < ||x; — x,||? — 29k (F(xe) — %) + V2|V F(x)]?

Inspiration from Polyak stepsize
e (sub)gradient method for convex optimization: x, 1 = x; — 7:Vf(x;)
e distance of x;,1 to an optimal point x,

[xer1 — x:|1? = [[xe — %V F(xe) — x|)?
=[x = x> = 29V (xe) T (xe — x) + 72 VF(x)[?
(by convexity) < ||x; — x,||? — 29k (F(xe) — %) + V2|V F(x)]?

® choose ~; to minimize upper bound on ||x;,; — x,||?

- f(x)—f*
TP

Inspiration from Polyak stepsize
(sub)gradient method for convex optimization: x;;1 = x; —7:Vf(x;)
distance of x;,1 to an optimal point x,
Ixes1 = Xl = [lxe — 7V (xe) — x|

=[x = x> = 2% VF(x) " (e — %) + 7V ()
(by convexity) < [x — x.|* — 27 (f(x:) — F*) + 2| VF(x)[]?
choose 7; to minimize upper bound on |x;;; — x|
. f(x) —f*
Ve = 2
IV ()

limitations

— requires convexity (but can derive similar stepsizes using smoothness)
— do not have access of f* in general (and f(x;) in stochastic setting)

Block coordinate optimal stepsizes (BCOS)
choose 7; x minimize expected distance of x;;1 from x,
e [llxes =7 = lxe =2 D0 (=29 — 50 Eeldesl) 492 Ee 1 2]
k=1

block-coordinate optimal stepsizes

<Xt,k — X,k Et[dt,k]>
E.[ld: 2] ’

Vek = k=1....,m

Block coordinate optimal stepsizes (BCOS)

choose 7; x minimize expected distance of x;11 from x,

e [llxes =7 = lxe =2 D0 (=29 — 50 Eeldesl) 492 Ee 1 2]
k=1

block-coordinate optimal stepsizes

<Xt,k — X ks Et[dt,k]>

, k=1,....m
Ee[l|de]?]

Ytk =

obviously, does not work in practice
® do not have access to x,

e cannot compute E,[-] precisely

Simplify optimal stepsize rule

<Xt,k — X,k Et[dt,k]>
E.[ld: %]

® absorb quantities related to x, into tunable parameters o

<Xt,k — Xi k) Et[dt,k]> = ||Xt,k - X*,kH”Et[dt,k]“ Ccos ‘gt,k
~ oy | |E¢[dr]

Ttk =

restrict a, x > 0: being “optimistic’ that (x;x — x. x, E¢t[d:4]) > 0

10

Simplify optimal stepsize rule

<Xt,k — X,k Et[dt,k]>
E.[ld: %]

® absorb quantities related to x, into tunable parameters o

Ttk =

<Xt,k — Xi k) Et[dt,k]> = ||Xt,k - X*,kH HEt[dt,k]“ Ccos ‘9t,k
~ oy | |E¢[dr]

restrict a, x > 0: being “optimistic’ that (x;x — x. x, E¢t[d:4]) > 0

® use a single a; >0
~_Ec[de]l

= a —_—
Tk [dek]

— assuming ay k similar (better to exploit block-wise structure if possible)

— stepsize schedule: «; should decrease as E[||x; — x.||] becomes small

10

Approximate the expectations

~ [Ee[de.i]ll

Ytk = Ct =7 7 1157
E.[llde.l?]
e approximate E;[-] using exponential moving average (EMA)

Utk = 6Ut—1,k + (1 - ﬁ)dt,k
Vik = Bve-1k + (1= B) | dell®

® practical block-coordinate stepsize
[k]

Ytk = O
Vek + €

— U, € R™ and v, € Ry: mean and 2nd-moment estimators respectively
— € > 0 on denominator: avoid numerical instability when v; , too small

11

Approximate the expectations

~ [Ee[de.i]ll

Ytk = Ct =7 7 1157
E.[llde.l?]
e approximate E;[-] using exponential moving average (EMA)

Utk = ﬂut—l,k + (1 - ﬁ)dt,k
Vik = Bve-1k + (1= B) | dell®

® practical block-coordinate stepsize
[k]

Ytk = O
Vek + €

— U, € R™ and v, € Ry: mean and 2nd-moment estimators respectively
— € > 0 on denominator: avoid numerical instability when v; , too small

problem: ratio of two EMA estimators can be volatile

11

Further simplfication

e define signal fraction (SiF)

o LEdddP [Ed P
* T Edldesl2] T TELdesd [+ Var(de)

€ [0,1]
e decomposition of stepsize rule (keeping scaling-invariance)

[Ee[de][I 1

Vek = At/ Pt,
‘ Ecllldesll?] \/E[der 7] o \/Etludtkl

12

Further simplfication

e define signal fraction (SiF)

[Ee[de]l® [E:[de][I
Ecflldexll?] IIE:lde][+ Var(dek)

e decomposition of stepsize rule (keeping scaling-invariance)

€ [0,1]

Ptk =

o JIEGE 1 1
’ E-[lldeil?] \/Ec[l[de.i]I?] V Et[lldtkl
® approximate 2nd-moment with EMA
1 1

~ ’ /
Ttk = Q= F—— k= Qg — —
z/ Et[dt2,k] Vek T+ €

— assimilate effect of p; x into) together with ||x; x — x. k|| cos(£)
— only one EMA estimator on denominator (under square-root)

12

QOutline

background and motivation
PBCOS: block coordinate optimal stepsizes

instantiations of BCOS

— search directions: stochastic gradient, momentum, preconditioned, ...
— 2nd moment estimators: EMA, conditional estimator

numerical experiments

convergence analysis

13

Instantiations of BCOS

focus on single-coordinate blocks (element-wise arithmetic)

Ve = Bveq + (1 - 5)dt2
d;
Vet €

Xt+1 = Xp — Ot

14

Instantiations of BCOS
focus on single-coordinate blocks (element-wise arithmetic)

Vi = Vi1 + (1 - 5)dt2
d;
Vet €

Xt+1 = Xp — Ot

® search direction d;

— stochastic gradient: g; = V£ (x:,&;)
— stochastic momentum: m; = Sd;—1 + (1 — 5)g:

® 2nd-moment estimator v;
— EMA estimator: v; = 'v;_; + (1 — 3')d?
— conditional estimator when d; = m;

e BCOS with decoupled weight decay

14

BCOS with stochastic gradient as search direction

Algorithm BCOS-g

. ® same as RMSprop
input: Xo, {ac}ez0, f €[0,1), >0 [Tieleman and Hinton, 2012]

Vo1 = g5
fort=0,1,2,... do
gt = VI(xe, &)

Ve = fBve1 + (1 - B)gf (sign-SGD method)
8t
Xey1 = Xp —
t+1 t t\/7t+ €

® special case: S =0ande=0

Xer1 = Xe — ausign(gy)

15

BCOS with momentum as search direction

Algorithm BCOS-m

® two smoothing factors 1, 5,

input: xo, {a:}, 51,5 €[0,1), e >0 — can choose independently

- s — (31 =[5> works well in practice
m-1 = 8o, V-1= 8%

fort=0,1,2,... do
8t = Vf(xhgt)
my = ﬁlmt—l + (1 - ﬁ1)gt

Vi = fove—r + (1 — 62)'”%
my

Vet €

Xt4+1 = Xp — Q¢

16

BCOS with momentum as search direction

Algorithm BCOS-m

® two smoothing factors 1, 5,

input: xo, {a:}, 51,5 €[0,1), e >0 — can choose independently
m1= g V1= gg — p1=/[works well in practice
for t =0,1,2,... do * Adam: replace m; by g7
g = V(x:, &) — mismatch between direction
t — ty St

and 2nd moment estimator
me = Bime_1 + (1 — p1)g: — need to compensate with
Ve = Bave1 + (1 — Bo)m} larger 3,
o (e.g.. B = 0.9, B, = 0.99)
Vet €

Xt4+1 = Xp — Q¢

16

BCOS with conditional estimator

Q¢

VE:df]

® notice conditional expectation in V; , =

17

BCOS with conditional estimator

Q¢

VE:df]

® notice conditional expectation in V; , =

® exploit structure when d; = m;:

E; [mﬂ =E; [(ﬂmtfl +(1 - B)gt)ﬂ
= BPE[m} 4]+ 26(1 — B)Ei[me_1 © g] + (1 — B)’Ec[g7]
= mZ_; +2B(1 — B)me—1 © E¢lge] + (1 — B)°E:[g?]

17

BCOS with conditional estimator

Q¢

VE:df]

® notice conditional expectation in V; , =
® exploit structure when d; = m;:
E; [mﬂ =E; [(ﬂmt—l + (1 - B)gt)ﬂ

= BPE[m?] + 28(1 — B)E.[me1 ® g] + (1 — B)*E([g]
= mZ_; +2B(1 — B)me—1 © E¢lge] + (1 — B)°E:[g?]

— approximate E,[g;] with m,
— approximate E.[g?] with g2 (coefficient (1 — 3)? very small in practice)

17

BCOS with conditional estimator

Q¢

VE:df]

® notice conditional expectation in V; , =

® exploit structure when d; = m;:

E; [mﬂ =E; [(ﬂmtfl +(1 - B)gt)ﬂ
= BPE[m} 4]+ 26(1 — B)Ei[me_1 © g] + (1 — B)’Ec[g7]
= mZ_; +2B(1 — B)me—1 © E¢lge] + (1 — B)°E:[g?]

— approximate E,[g;] with m,
— approximate E.[g?] with g2 (coefficient (1 — 3)? very small in practice)

® resulting 2nd-moment estimator

ve = B2m2 4+ 28(1 — B)me_y © m. + (1 — §)%g?

17

BCOS with conditional estimator

Algorithm BCOS-c (ugly version)

input: xo, {a:}, 5 €[0,1),e>0

_ 2
m_; =80, V-1= 8

fort=0,1,2,...

do

gt = VI(x, &)

my = me_1+ (1 — B)g:
ve = 32m7_; +28(1=F)me_1 © me + (1-5)g7

Xt41 = X¢ — Ot

my

VVe e

e works well in practice!

e fewer optimizer state
(do not store v;_1)

e fewer hyper-parameters
(one smoothing factor)

18

BCOS with conditional estimator

Algorithm BCOS-c (ugly version)

input: x, {a:}, B€[0,1), ¢>0 e works well in practice!
m_,=go V.1= go2 e fewer optimizer state
fort=0,1,2,... do (do not store v;_1)

gr = VI(x, &) e fewer hyper-parameters

one smoothing factor
mt=5mt—1+(1—5)gt (&)

ve = Pm?_ | +28(1-B)me_1 @ my + (1-5)%g? ® but it looks ugly!
my

VVe e

Xt41 = X¢ — Ot

18

BCOS with conditional estimator

Q¢

VE:[df]

® notice conditional expectation in V; , =
® exploit structure when d; = m;:
Et[mﬂ =E, [(5mt—1 + (1 - ﬂ)gt)ﬂ

= BPEi[m{ 1] +26(1 — B)E[m,—1 © g + (1 — B)°E¢[g{]
= 2m}_; +26(1 = B)me_1 © E¢fge] + (1 — B)°E¢[g7]

— approximate E;[g;] with mg — m;_
— approximate E.[g?] with gZ (coefficient (1 — 3)? very small in practice)

19

BCOS with conditional estimator

Q¢

VE:[df]

® notice conditional expectation in V; , =
® exploit structure when d; = m;:
Et[mﬂ =E, [(5mt—1 + (1 - 5)&)2}

= BPEi[m{ 1] +26(1 — B)E[m,—1 © g + (1 — B)°E¢[g{]
= 2m}_; +26(1 = B)me_1 © E¢fge] + (1 — B)°E¢[g7]

— approximate E;[g;] with mg — m;_
— approximate E.[g?] with gZ (coefficient (1 — 3)? very small in practice)

® resulting 2nd-moment estimator

ve=(1—(1-p)?)my +(1-P)g;

19

BCOS with conditional estimator

Q¢

VE:[df]

notice conditional expectation in 7, =
exploit structure when d; = m;:
Et[mﬂ =E, [(5mt—1 + (1 - 5)&)2}

= BPEi[m{ 1] +26(1 — B)E[m,—1 © g + (1 — B)°E¢[g{]
= 2m}_; +26(1 = B)me_1 © E¢fge] + (1 — B)°E¢[g7]

— approximate E;[g;] with fn{ — my_1
— approximate E.[g?] with gZ (coefficient (1 — 3)? very small in practice)

resulting 2nd-moment estimator

— (1—(1=BP)m, + (1 — B8’

memoryless “EMA” form: v, = 8'm?_; + (1 — 8')gZ with ' =1 — (1 — §)?

19

BCOS with conditional estimator

Algorithm BCOS-c

input: xo, {a:}, 5 €[0,1),e>0

m_1 =80, V-1 = gg
fort=0,1,2,... do

gt = VI(x &)

my = Bmy_1 + (1 — B)g:

vt:(l—(l

Xt4+1 = Xt — Q¢

—BY)mi_ + (1 - B)°g?

my

Vet €

® fewer optimizer state
(do not store v;_1)

® fewer hyper-parameters
(one smoothing factor)

® and it looks beautiful

20

BCOS with conditional estimator

Algorithm BCOS-c

input: xo, {a:}, 5 €[0,1),e>0

m_; =go, V-1 = g&

fort=0,1,2,... do
gt = VI(x &)
my = Bmy_1 + (1 — B)g:
ve=(1—(1—B8))mi_,+(1—5) g

my

Vet €

Xt4+1 = Xt — Q¢

® fewer optimizer state
(do not store v;_1)

® fewer hyper-parameters
(one smoothing factor)

® and it looks beautiful

compare with Adam
® replace v, ; with m?
® explains o ~ 1 — (1 - 3;)?

20

BCOS with decoupled weight decay

* minimize regularized E¢[f(x,&)] + 3|/x||?

e can apply BCOS with g; := V£ (x:,&;) + Ax;, but does not work well

21

BCOS with decoupled weight decay

* minimize regularized E¢[f(x,&)] + 3|/x||?
e can apply BCOS with g; := V£ (x:,&;) + Ax;, but does not work well

e AdamW: Adam with decoupled weight decay [Loshchilov and Hutter, 2019]

my
Xt+1 = Xt — Ot _Oét>\Xt
\/ Ve + €
my

- (]. - Oét)\)Xt — Qi

V Vet €

where m; is momentum of g; = Vf(x, &), not including Ax;

21

BCOS with decoupled weight decay

minimize regularized E¢[f(x,&)] + 3|/x||?
can apply BCOS with g; := Vf(x:,&;) + Ax:, but does not work well

AdamW: Adam with decoupled weight decay [Loshchilov and Hutter, 2019]

my
Xt+1 = Xt - Oét _Oét>\Xt
\/ Ve + €
my

- (]. - O[t)\)Xt — Qi

V Vet €

where m; is momentum of g; = Vf(x, &), not including Ax;

BCOSW: apply the same change to BCOS

21

BCOSW with conditional estimator

Algorithm BCOSW-c

input: xo, {a¢}, f1,062€[0,1), e >0
m_y =g, Vo1=g
fort=0,1,2,... do
g = Vf(x:, &)
m; = Bime_1 + (1 — f1)g:
vi=(1—(1=5P)mi_;+(1—p5)g?

my

VVe T e

Xt+1 - (1 - Qt)\)xt — Ot

® decoupled weight decay

® apply similar change for
BCOSW-g, BCOSW-m

® BCOSW-c perform best in
experiments

22

Outline

background and motivation
BCOS: block coordinate optimal stepsizes

instantiations of BCOS

— search directions: stochastic gradient, momentum, preconditioned, ...

— 2nd moment estimators: EMA, conditional estimator
numerical experiments

convergence analysis

23

Experiments: varying smoothing factors

training GPT2 (126M) on OpenWebText dataset
® o = 0.002, warm up 2k iterations, then cosine decay (x0.01)

® weight decay A = 0.1

Validation loss

10
—— AdamW B 2 = (0.8, 0.95)
—— AdamW $15 = (0.9, 0.975)
8| AdamW B1 > = (0.95, 0.99)
8
7\
O |
5 L\
4
4 k 5
(0 X & &

Iteration

Validation loss

10

—

——BCOSW-c 8 =0.8
BCOSW-c 8 = 0.9
—— BCOSW-c 8 = 0.95

8

W A~ o3

0 2k 4k

6k

Sl

20k

40k 60k 80k
Iteration

Figure 1: Comparing AdamW and BCOSW-c with different momentum parameters.

100k

24

Experiments: comparing -g, -m, -c variants

training GPT2 (126M) on OpenWebText dataset
® o = 0.002, warm up 2k iterations, then cosine decay (x0.01)

® weight decay A = 0.1

i ‘ 3.6
—— AdamW (4 2 = (0.9, 0.99)
2 6 ——BCOSW-g 5 =0.9 34
kel ——BCOSW-m 31 = 32 =0.9 ’
g —— BCOSW-c 8 =0.9
£ 5 b 32
%
> 4 3.0 B
3L ‘ 2.8 ‘ !
0 2k 4k 6k 8k 10k 0 20k 40k 60k 80k 100k
Iteration Iteration

Figure 2: Comparing AdamW and BCOSW. Left: first 10k iterations; Right: all 100k iterations.

25

Experiments: loss vs Ir

training GPT2 (126M) on OpenWebText dataset
e warm up 2k iterations, then cosine decay (x0.01)
® weight decay A = 0.1

AdamW BCOSW-c
3 T T e e 3 T T T

Do

o)

t
T

o

©

>t
T

—e—train loss —e—train loss
—eo—test loss

—e—test loss

2.85

Cross-entropy loss
[\
Ne)
T

O

[09]

(@1

T

|
Cross-entropy loss
[\
NeJ
T

28 Ll Lol Lol 2‘8\\\\ Lol

1074 1073 1072 10~ 1073

amax amax

1072

26

Experiments: decoupled weight decay

training GPT2 (126M) on OpenWebText dataset
® a = 0.002, warm up 2k iterations, then cosine decay (x0.01)

® weight decay A = 0.1

12 —— Adam A = 0.001 12 ——BCOS-c A =0.001
B — Adam A = 0.1 . — BCOS-¢c A =0.1
2 10 — AdamW X = 0.001 2 10 — BCOSW-c A = 0.001
= —— AdamW A = 0.1 = BCOSW-c A = 0.1
g 8 £ 8 P
< =]
= { =
§ 6 Il al uluu.‘u ; 6

4 4
0 20k 40k 60k 80k 100k 0 20k 40k 60k 80k 100k

Iteration Iteration

Figure 3: Left: Adam/ AdamW with 87 5 = (0.9, 0.99). Right: BCOS/BCOSW with 8 = 0.9.

Experiments: ResNet and Vision Transformer

e ResNet20 on CIFAR10 (using both cosine decay and step decay)

e vision transformer (ViT) on ImageNet (cosine decay)

Test precision at 1

90

80

70

60 LL

——SGD o = 107" cos

SGD o = 107" step
—— AdamW o = 1072 cos
—— AdamW o = 1072 step
——BCOSW-c & = 1072 cos
—— BCOSW-c a = 1073 step

50 100
Epoch

150

200

Test precision at 1

80

70

60

50

40

—— AdamW o = 5-10~*
—— AdamW o =1-10"3
—BCOSW-ca=5-10"*
——BCOSW-ca=1-10"°

50

100 150

Epoch

200 250 300

Figure 4: Left: ResNet-20 on CIFAR10. Right: Vision Transformer on ImageNet.

28

Outline

background and motivation
PBCOS: block coordinate optimal stepsizes

instantiations of BCOS

— search directions: stochastic gradient, momentum, preconditioned, ...

— 2nd moment estimators: EMA, conditional estimator
numerical experiments

convergence analysis

29

Convergence analysis in two steps

® analysis of conceptual algorithm

1

o1
T]

Xt-‘rl — (1 - atA)Xt - ﬁ}//t @ dt) Where

following classical SA literature in 1950’s

30

Convergence analysis in two steps

® analysis of conceptual algorithm

1

" VEd?]

Xt+1 - (1 - O{tA)Xt - /'3/11- @ dt, Where ")/t =

following classical SA literature in 1950’s

® analysis of practical algorithm

Xep1 = (L — aeA)xe — v © dh, where Ve = Qi

30

Convergence analysis in two steps

® analysis of conceptual algorithm

1

S
Vt t /—Et[df]

Xt-‘rl — (1 - atA)Xt - /’3;1- @ dt) Where

following classical SA literature in 1950’s

® analysis of practical algorithm

1
Ve + €

Xep1 = (L — aeA)xe — v © dh, where Ve = Qi

based on bounding the difference between expected updates

‘Et[”?t © de] = E[7: © dt” < Ct‘Et[:};t © dt]| + O(€) + O(Vary(wt))

30

Classical aiming conditions

e classical stochastic approximation (SA) for solving E[g(x.,£)] =0

Xe+1 = Xt — Q¢ g(Xtaft)

aiming conditions critical in convergence analysis

— original SA paper [Robbins and Monro, 1951]
— multi-dimensional extension [Blum, 1954]
— many others ...

e simplified presentation (strong aiming condition) [Sakrison, 1966]

plix = x||* < (x = x., E[g(x.)]) < hllx — x.|?

31

Classical aiming conditions

e classical stochastic approximation (SA) for solving E[g(x.,£)] =0

Xe+1 = Xt — Q¢ g(Xtaft)

aiming conditions critical in convergence analysis

— original SA paper [Robbins and Monro, 1951]
— multi-dimensional extension [Blum, 1954]
— many others ...

e simplified presentation (strong aiming condition) [Sakrison, 1966]
plix = x||* < (x = x., E[g(x.)]) < hllx — x.|?
e stochastic optimization: minimize E[f(x, {)] and g(x,&) = Vf(x, &)

(strong) convexity + smoothness = (strong) aiming

31

Aiming condition with coordinate-wise stepsizes

® expected update for conceptual BCOS

= ary/pr © sign(E¢[d:])

N S B A
Eth/t@dt]—Et[t]— tm—

VE:[d7]

32

Aiming condition with coordinate-wise stepsizes

® expected update for conceptual BCOS

Etﬁt ®© dt] = E; [CHL]] =« M = Oét\/a © sign(Et[dt])

" VE[d?]

e Assumption A (Aiming):
— there exists x, € R" such that the following holds for all t > 0 almost surely

(xe — X, v/pr © sign(E¢[d]) + Axe) > Al[xe — x.|?

— if E¢[d;] = E[d¢|x;], then it suffices to have it for every x € R”

32

Aiming condition with coordinate-wise stepsizes

expected update for conceptual BCOS

= a¢y/pe © sign(E.[d])

E:[V: © di] = E; [at dy] _ E.[d:]

VEI@ | VR

Assumption A (Aiming):
— there exists x, € R" such that the following holds for all t > 0 almost surely

(xe — X, v/pr © sign(E¢[d]) + Axe) > Al[xe — x.|?
— if E¢[d:] = E[d;|x¢], then it suffices to have it for every x € R”
compare with classical aiming: one-sided bound only (due to p;x < 1)

assumes neither convexity nor smoothness, but overlapping with convexity

32

Understanding the aiming condition

¢ block-coordinate weighted aiming (simplified version with A = 0)
<Xt — X, /Pt © Sign(Et[dt])> >0

. o . : E.[d:]|
— sign of expected search direction weighted by SiF: p; s = [E:1d:]|

— less contribution from noisy directions

E.[llde x[]

33

Understanding the aiming condition

¢ block-coordinate weighted aiming (simplified version with A = 0)
<Xt — X, /Pt © Sign(Et[dt])> >0

E.[d: «]|?
— sign of expected search direction weighted by SiF: p; s = %
t t,k

— less contribution from noisy directions

® aiming condition versus convexity
— full-block version recovers classical condition (which follows from convexity)
— can tolerate coordinate-wise nonconvexity

— cannot handle non-diagonal ill-conditioning (not surprising)

33

Almost-sure convergence of conceptual BCOSW
e lemma: under Assumption A, 0 < oA < 1, and ¢, =n+ A2 ||x. [+2) || x|,
Ee[llxes1 — x|°] < (1= @A) x — x|* + afc.,

thus for sufficiently small a,

Eelllxers—x]”] < lIxe—x.|?

34

Almost-sure convergence of conceptual BCOSW
e lemma: under Assumption A, 0 < oA < 1, and ¢, =n+ A2 ||x. [+2) || x|,
Ee[llxes1 — x|°] < (1= @A) x — x|* + afc.,

thus for sufficiently small a,

Eelllxers—x]”] < lIxe—x.|?

® theorem: suppose a; > 0 and 0 < a; A <1 for all t >0 and

oo o
E oy = 00, E Oé? < o0,
t=0 t=0

then Assumption A implies ||x; — x.|| — 0 almost surely

(by “almost supermargingale” lemma of [Robbins and Siegmund, 1971])

34

Convergence rates of conceptual BCOSW

e corollary: suppose a; = a > 0 and a\ < 1 then Assumption A implies

a?c,

Efllx — x*] < (1= aX)* Ellxo —x["] + T-({d—a\?

35

Convergence rates of conceptual BCOSW

e corollary: suppose a; = a > 0 and a\ < 1 then Assumption A implies

a?c,

Bl = x]"] < (1 =X Efla —x] + == 155

e theorem: suppose a; = «/(t + 1) with 1/2 < a\ < 1, then Assumption A
implies for all t > 1

. <c,ﬁ + NE[||x0 — X*HZ]) 1 1
Ellx — x| < 20\ — 1 ?+O()

(by applying Chung's lemma [Chung, 1954])

35

Analysis of practical BCOSW

e Assumption B (Bias): there exist 7 > 0 and ¢ > 0 such that for all t > 0
|E[ve] — E¢[d?]| < TE([d?] + €

36

Analysis of practical BCOSW

® Assumption B (Bias): there exist 7 > 0 and € > 0 such that for all t > 0
|E[ve] — E¢[d?]| < TE([d?] + €

® lemma: Assumptions B implies

E;Ec[l;]tz] _E, [Vi’t+ 6] < \f% + O(e) + O(Vare(wvr)),
where
Ct:47’+37'2+8+47'+37'2< 1 N 1)
8 16 SNR¢(ve +€) ~ /SNR:(dr)v/SNR¢(ve + €)

® SNR;(-) denotes conditional Signal-to-Noise Ratio, e.g.,

Et[dt]2 _ Pt
Vart(dt) 1-— Pt

SNRt(dt) =

36

Almost sure convergence of practical BCOSW

e theorem (almoost sure convergence to a neighborhood of x,): suppose
— Assumptions A (Aiming) and B (Bias) hold
— ||d:|| bounded almost surely
—0<aA<1lforallt>0and > 2 a;=00and > oja? < oo
let & be the smallest constant such that, for all t > 0,
2¢e[lV/pell + O(€) + O(Vare(vr)) < A5,

limsup ||x; — x|| <6 a.s.
t—o00

then

(by Dvoretzky's theorem and extensions [Dvoretzky, 1956] [Venter, 1966])

37

Almost sure convergence of practical BCOSW

e theorem (almoost sure convergence to a neighborhood of x,): suppose
— Assumptions A (Aiming) and B (Bias) hold
— ||d:|| bounded almost surely
—0<aA<1lforallt>0and > 2 a;=00and > oja? < oo

let & be the smallest constant such that, for all t > 0,

2¢e[[v/pell + O(e) + O(Vare(wr)) < Ad,

then)
limsup ||x; — x|| <6 a.s.
t—o00

(by Dvoretzky's theorem and extensions [Dvoretzky, 1956] [Venter, 1966])

e definition of c; reflect bias-variance tradeoff (simplified for 7 < 1)
1 . 1
SNRe(ve +€) * /SNR¢(d;)\/SNR¢(vt + €)

G < T+

37

Bias-variance tradeoff

a general framework for convergence analysis

38

Bias-variance tradeoff
a general framework for convergence analysis

e SGD with d; = g; or d; = m; (using common constant v, for all coordinates)
— high bias: |E;[v;] — E;[d?]| = |v — E.[d?]| for some constant v
— zero variance

38

Bias-variance tradeoff

a general framework for convergence analysis

e SGD with d; = g; or d; = m; (using common constant v, for all coordinates)
— high bias: |E;[v;] — E[d?]| = |v — E;[d?]| for some constant v
— zero variance
® sign-SGD with d; = g; or d; = m, (effectively using v; = d?)
— zero bias: E;[v;] = E[d?]
— high variance: Var,(v;) = Var.(d;)

38

Bias-variance tradeoff
a general framework for convergence analysis

e SGD with d; = g; or d; = m; (using common constant v, for all coordinates)
— high bias: |E;[v;] — E;[d?]| = |v — E.[d?]| for some constant v
— zero variance
® sign-SGD with d; = g; or d; = m, (effectively using v; = d?)
— zero bias: E;[v;] = E[d?]
— high variance: Var,(v;) = Var.(d;)
e Adam(W)
— bias: no closely form (better bound by assuming smoothness)
— variance: Var:(v;) = (1 — 3,)?Var:(g?)

38

Bias-variance tradeoff
a general framework for convergence analysis

e SGD with d; = g; or d; = m; (using common constant v, for all coordinates)
— high bias: |E;[v;] — E;[d?]| = |v — E.[d?]| for some constant v
— zero variance
® sign-SGD with d; = g; or d; = m, (effectively using v; = d?)
— zero bias: E;[v;] = E[d?]
— high variance: Var,(v;) = Var.(d;)
e Adam(W)

— bias: no closely form (better bound by assuming smoothness)
— variance: Var:(v;) = (1 — 3,)?Var:(g?)
e BCOS(W)-c
- bias: Et[Vt] - Et[dtz] - 2/8(1 - 5)mt_1 (mt_]_ - Et[gt])
— variance: Var,(v;) = (1 — 8)*Var,(g?) (same as Adam 3, = 1—(1-7)?)

38

Summary

BCOS: a family of block-coordinate optimal stepsizes

® basic idea: minimize expected distance of next iterate to an optimal point
® instantiations of BCOS
— search directions: gradient, momentum, preconditioned, spectral, ...
— 2nd moment estimators: EMA, conditional estimator
® convergence analysis

— two-step convergence analysis: from conceptual to practical

— SiF weighted aiming condition (neither convexity nor smoothness)

— decoupled weight decay: stronger convergence guarantees

— bias-variance tradeoff for practical algorithms (better with smoothness)

® more empirical study to understand full potential

39

References |

J. R. Blum. Multidimensional Stochastic Approximation Methods. The Annals of

Mathematical Statistics, 25(4):737 — 744, 1954. doi:

10.1214/aoms/1177728659. URL
https://doi.org/10.1214/aoms/1177728659.

K. L. Chung. On a stochastic approximation method. The Annals of

Mathematical Statistics, pages 463—483, 1954.

A. Dvoretzky. On stochastic approximation. In Proceedings of the Third Berkeley
Symposium on Mathematical Statistics and Probability, volume 1, pages
39-55. University of California Press, 1956.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
Proceedings of International Conference on Learning Representations (ICLR),

2015. arXiv:1412.6980.

40

https://doi.org/10.1214/aoms/1177728659

References |1

|. Loshchilov and F. Hutter. Decoupled weight decay regularization. In
International Conference on Learning Representations (ICLR), 2019. URL
https://openreview.net/forum?id=Bkg6RiCqY7.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400-407, 1951.

H. Robbins and D. Siegmund. A convergence theorem for non negative almost
supermartingales and some applications. In J. S. Rustagi, editor, Optimizing
Methods in Statistics, pages 233-257. Academic Press, 1971. ISBN
978-0-12-604550-5. doi:
https://doi.org/10.1016/B978-0-12-604550-5.50015-8. URL https://www.
sciencedirect.com/science/article/pii/B9780126045505500158.

41

https://openreview.net/forum?id=Bkg6RiCqY7
https://www.sciencedirect.com/science/article/pii/B9780126045505500158
https://www.sciencedirect.com/science/article/pii/B9780126045505500158

References Il

D. J. Sakrison. Stochastic approximation: A recursive method for solving
regression problems. In A. Balakrishnan, editor, Advances in Communication
Systems, volume 2, pages 51-106. Elsevier, 1966. doi:
https://doi.org/10.1016/B978-1-4832-2939-3.50008-9. URL https://www.
sciencedirect.com/science/article/pii/B9781483229393500089.

T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for
machine learning, 4(2):26-31, 2012.

J. H. Venter. On Dvoretzky Stochastic Approximation Theorems. The Annals of
Mathematical Statistics, 37(6):1534 — 1544, 1966. doi:
10.1214/a0oms/1177699145. URL
https://doi.org/10.1214/aoms/1177699145.

42

https://www.sciencedirect.com/science/article/pii/B9781483229393500089
https://www.sciencedirect.com/science/article/pii/B9781483229393500089
https://doi.org/10.1214/aoms/1177699145

	References

