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Motivation

empirical risk minimization (ERM) (in modern deep learning)

minimize f (x) :=
1

N

N∑
i=1

fi(x)

many previous and concurrent works . . .

• stochastic optimization: minimize f (x) := Ez [fz(x)]

• minimizing finite-sums: variance reduction, acceleration, . . .

focus of this talk

• fi smooth but can be nonconvex

• fi ≥ 0: loss functions in machine learning mostly nonnegative
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Outline

• minimizing single nonnegative function

– nonnegative Gauss-Newton (NGN) step size rule

– connection with Polyak step size

• generalized Gauss-Newton (prox-linear)

• stochastic NGN method

• extensions and summary
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Minimizing single nonnegative function

minimize
x∈Rd

f (x)

• f smooth but can be nonconvex
• f non-negative: f (x) ≥ 0 for all x ∈ Rn

can apply to any f that has nontrivial lower bound f lb ≤ f ?:

f (x)← f (x)− f lb

the trick: let r(x) =
√

f (x) and consider

minimize
x∈Rn

r 2(x)

r(x) may not arise naturally, e.g., f (x) = −log(s(x)) with s(x)<1
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Gauss-Newton method

xk+1 = xk + pk

where
pk = arg minp

(
r(xk) +∇r(xk)Tp

)2

• solving
(
r(xk) +∇r(xk)Tp

)
∇r(xk) = 0 (under-determined)

pk = −
(
∇r(xk)∇r(xk)T

)†
r(xk)∇r(xk) = − r(xk)

‖∇r(xk)‖2
∇r(xk)

• using ∇r(x) = 1

2
√

f (x)
∇f (x)

xk+1 = xk − 2f (xk)

‖∇f (xk)‖2
∇f (xk)

gradient descent with variable step size (c.f. Polyak if f ?=0)
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Polyak step size

(sub)gradient method for convex optimization

xk+1 = xk − γk∇f (xk)

Polyak step size rule:

γk =
f (xk)− f ?

‖∇f (xk)‖2
1935-2023

derivation:

‖xk+1 − x?‖2 = ‖xk − γk∇f (xk)− x?‖2

= ‖xk − x?‖2 − 2γk∇f (xk)T (xk − x?) + γ2k‖∇f (xk)‖2

≤ ‖xk − x?‖2 − 2γk
(
f (xk)− f ?

)
+ γ2k‖∇f (xk)‖2

minimizing the upper bound to obtain optimal γk
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Universal optimality of Polyak step size

theorem (Hazan and Kakade 2019)

f (xk)− f ? ≤ min

{
GD0√

k
,

2LD2
0

k
,
G 2

µk
, LD2

0

(
1− µ

2L

)k}
where xk = arg minx∈{x1,...,xk} f (x) and D0 = ‖x0 − x?‖

assumptions convex &

‖∇f ‖ ≤ G
convex &

L-smooth
µ-convex &

‖∇f ‖ ≤ G
µ-convex &

L-smooth

rate of f (xk)−f ? 1√
k

L
k

1
µk e−

L
µk

step size γk
1√
k

1
L

1
µk

1
L
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Instability when f ? unknown
Gauss-Newton step size rule:

xk+1 = xk − σ f (xk)−0

‖∇f (xk)‖2
∇f (xk)

example: linear regression with f ? > 0

100 101 102 103
10 1

100

101

102
Quadratic, loss

PS,  = 0.03
PS,  = 0.01
PS,  = 0.003
PGN,  = 0.1
PGN,  = 0.35
PGN,  = 0.6
PGN,  = 0.85

100 101 102 103
10 3

10 2

10 1

100

101

102

103

Quadratic, effective learning rate
2/L
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Modifying Polyak step size
• gradually tighten lower bound (Hazan and Kakade 2019)

• clipping the step size: γk = min
{

f (xk)
‖∇f (xk)‖2 , σ

}
pk = arg min

p

{
max

{
0, f (xk) +∇f (xk)Tp

}
+

1

2σ
‖p‖2

}
• Gauss-Newton + trust region: γk = min

{
2f (xk)
‖∇f (xk)‖2 ,

σ
‖∇f (xk)‖

}
pk = arg min

‖p‖≤σ

(
r(xk) +∇r(xk)Tp

)2
• regularized Gauss-Newton (Levenberg-Marquardt)

pk = arg min
p

{(
r(xk) +∇r(xk)Tp

)2
+

1

2σ
‖p‖2

}
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Regularized Gauss-Newton step size

xk+1 = xk + pk

where

pk = arg min
p

{(
r(xk) +∇r(xk)Tp

)2
+

1

2σ
‖p‖2

}

• optimality condition(
r(xk) +∇r(xk)Tp

)
∇r(xk) +

1

σ
p = 0

• unique solution

pk = −
(

1

σ
I +∇r(xk)∇r(xk)T

)−1
r(xk)∇r(xk)

= − σ

1 + σ
2f (xk)‖∇f (xk)‖2

∇f (xk)
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Properties of NGN step size

xk+1 = xk − γk∇f (xk), γk =
σ

1 + σ
2f (xk)‖∇f (xk)‖2

• range of step size (similar to clipping)

γk ∈
[

1

L + σ−1
, σ

]

• harmonic mean of (naively modified) Polyak and constant

γk =
1

1
σ + 1

γGN
k

, γGN
k =

2f (xk)−0

‖∇f (xk)‖2

– σ → 0: almost constant step size σ
– σ →∞: naive modification of Polyak step size
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Numerical experiments

minimizing 2-D convex quadratic with f ? = 0

• gradient descent (GD) with constant step size η

• NGN with hyperparmaeter σ (variable step size γk)
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100
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100

Quadratic 2D, effective learning rate

2/L

11/28



Numerical experiments
logistic regression on LIBSVM datasets (Breast Cancer, Wine)
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Convergence results: strongly convex

xk+1 = xk − γk∇f (xk), γk =
σ

1 + σ
2f (xk)‖∇f (xk)‖2

thm: if f nonnegative, µ-convex, L-smooth, and σ < 1/µ, then

‖xk−x?‖2 ≤
(

1− µ

L+σ−1

)k
‖x0−x?‖2 + max

{
0,

2σ

µ

(
σL−1

σL+1

)}
f ?

• σ ≤ 1/L (regardless of f ?): linear convergence to solution

• σ < 1/µ and f ? = 0: linear convergence to solution

• σ ∈ (1/L, 1/µ) and f ? > 0: linear convergence to a ball
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Convergence results: convex

xk+1 = xk − γk∇f (xk), γk =
σ

1 + σ
2f (xk)‖∇f (xk)‖2

thm: if f nonnegative, convex and L-smooth, then for any σ > 0,

f (x̄k)− f ? ≤ ‖x
0 − x?‖2

σ̄k
+ max

{
0,

2σL− 1

σ̄

}
f ?

where x̄k = 1
k

∑k−1
i=0 x i and σ̄ = σ

σL+1

• σ ≤ 1/(2L): sublinear convergence to optimal value

• f ? = 0 (for all σ > 0): sublinear convergence to optimal value

• σ > 1/(2L) and f ? > 0: sublinear convergence to a ball
14/28



Convergence results: nonconvex

xk+1 = xk − γk∇f (xk), γk =
σ

1 + σ
2f (xk)‖∇f (xk)‖2

thm: if f nonnegative and L-smooth and σ < 2/L, then

min
k∈[K−1]

‖∇f (xk)‖2 ≤ 1

K

K−1∑
k=0

‖∇f (xk)‖2 ≤
[

(L + σ−1)

2− Lσ

]
2f (x0)

K

(cannot have σ arbitrarily large)
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Outline

• minimizing single nonnegative function

– nonnegative Gauss-Newton step size rule

– connection with Polyak step size
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Generalized Gauss-Newton (prox-linear)

minimize
x∈Rd

{f (x) := h(c(x))}

• update rule:
xk+1 = xk + pk

where

pk = arg min
p

{
h
(
c(xk) +∇c(xk)Tp

)
+

1

2σ
‖p‖2

}
• what if h does not have simple proximal mapping?

pk = arg min
p

{
f (xk) +∇f (xk)Tp +

1

2
pT∇2f (xk)p

}
idea: use composite structure to approximate ∇2f (xk)
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Generalized Gauss-Newton (prox-linear)

approximate Hessian of f (x) = h(c(x))

∇2f (x) = h′(c(x))∇2c(x) + h′′(c(x))∇c(x)∇c(x)T

= h′(c(x))∇2c(x) + h′′(c(x))
h′(c(x))2∇f (x)∇f (x)T

≈ 1
σ I + h′′(c(x))

h′(c(x))2︸ ︷︷ ︸
q(x)

∇f (x)∇f (x)T

determining step size (no need to use prox mapping of h)

pk = arg min
p

{
∇f (xk)Tp +

1

2
pT
(

1

σ
I + q(x)∇f (x)∇f (x)T

)
p

}
= − σ

1 + σq(xk)‖∇f (xk)‖2
∇f (xk)
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Generalized Gauss-Newton (prox-linear)

minimize
x∈Rd

{f (x) := h(c(x))}
update rule:

xk+1 = xk − γk∇f (xk), γk =
σ

1 + σq(xk)‖∇f (xk)‖2

where q(x) = h′′(c(x))
h′(c(x))2

• quadratic: h(y) = y 2, h′(y) = 2y , h′′(y) = 2, q(x) = 1
2f (x)

• monomial: h(y) = αy p, . . . , q(x) = 1
p

p−1 f (x)

• negative log (with 0 < y < 1 in cross-entropy): h(y) = − log(y),
h′(y) = −1/y , h′′(y) = 1/y 2, and thus q(x) = 1

18/28
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Numerical experiments

comparing h(y) = − log(y) vs h(y) = y 2

0 200 400 600 800 1000

10 7

10 5

10 3

10 1

101

Wine, = 0.0001, Train Loss

RegCGN-1-log,  = 100
RegCGN-1-log,  = 150
RegCGN-1-log,  = 200
RegCGN-1-square,  = 100
RegCGN-1-square,  = 150
RegCGN-1-square,  = 200
GD,  = 100
GD,  = 150
GD,  = 200

100 101 102 103
100

101

102

Wine, = 0.0001, Eff. learning rate

20 15 10 5 0
0

1

2

3

4

5
Wine, = 0.0001, PCA proj.

RegCGN-1-square
RegCGN-1-log
GD

4.8

4.0

3.2

2.4

1.6

0.8

0.0

0.8

1.6

2.4

0 100 200 300 400 500 600 700 800

10 6

10 4

10 2

100

Digits, = 0.0001, Train Loss

RegCGN-1-log,  = 30
RegCGN-1-log,  = 40
RegCGN-1-log,  = 50
RegCGN-1-square,  = 30
RegCGN-1-square,  = 40
RegCGN-1-square,  = 50
GD,  = 30
GD,  = 40
GD,  = 50

100 101 102 103

100

101

Digits, = 0.0001, Eff. learning rate

0 10 20 30
5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5
Digits, = 0.0001, PCA proj.

RegCGN-1-square
RegCGN-1-log
GD

3.6

2.7

1.8

0.9

0.0

0.9

1.8

h(y) = y 2 best in practice even for cross-entropy loss

19/28



Numerical experiments

comparing h(y) = − log(y) vs h(y) = y 2
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Outline

• minimizing single nonnegative function

– nonnegative Gauss-Newton step size rule

– connection with Polyak step size

• generalized Gauss-Newton (prox-linear)

• stochastic NGN method

• extensions and summary



Stochastic NGN method

empirical risk minimization (ERM)

minimize f (x) :=
1

N

N∑
i=1

fi(x)

SGD with NGN step size rule:

xk+1 = xk − γk∇fik(xk)

where ik picked randomly and

γk =
σ

1 + σ
2fik (x

k)‖∇fik(xk)‖2
=

1

1
σ +

‖∇fik (x
k)‖2

2fik (x
k)
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Convergence analysis: Some definitions

define
x? := arg min f (x), f ?i := min

x
fi(x)

and
∆int := E[fi(x

?)− f ?i ], ∆pos := E[f ?i ]

• ∆pos measures average positivity: zero if f ?i = 0 for all i

• ∆int measures interpolation: zero if x? = arg minx fi(x) for all i

possible scenarios

• in general ∆pos > 0 and ∆int > 0

• overparametrized models may have ∆pos = ∆int = 0

• both ∆pos = 0,∆int > 0 and ∆pos > 0,∆int = 0 feasible in theory
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Convergence results: convex

xk+1 = xk − γk∇fik(xk), γk =
σ

1 + σ
2fik (x

k)‖∇fik(xk)‖2

thm: assume each fi nonnegative, convex and Li -smooth, and let
L = maxi Li , then for any σ > 0

E
[
f (x̄K )− f (x∗)

]
≤ E‖x0 − x∗‖2

ησK
+ 3σL · (1 + σL)∆int

+ σL ·max {0, 2σL− 1}∆pos

where x̄K = 1
K

∑K−1
k=0 xk and ησ := 2σ

(1+2σL)2

• if ∆int = ∆pos = 0, then convergence for any σ > 0

• reducing σ: σk = σ/
√
k + 1 leads to O(log(k)/

√
k) rate
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Convergence results: nonconvex

xk+1 = xk − γk∇fik(xk), γk =
σ

1 + σ
2fik (x

k)‖∇fik(xk)‖2

thm: assume each fi nonnegative, Li -smooth, and let L = maxi Li ,
then for σ ≤ 1/(2L)

E

[
1

K

K−1∑
k=0

‖∇f (xk)‖2
]
≤ 12 · E[f (x0)− f ∗]

σK
+ 18σL∆2

noise

where ∆2
noise = supx E[‖∇f (x)−∇fi(x)‖2].

• decreasing σk = σ/
√
k + 1 leads to O(log(k)/

√
k) rate
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Numerical experiments: I
logistic regression on LIBSVM datasets (Breast Cancer, Wine)
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Numerical experiments: II

training ResNet18 (11 million parameters) on CIFAR10 dataset

• green: SGD with step sizes γ ∈ {0.01, 0.03, 0.1, 0.3, 1}
• red: stochastic NGN with σ ∈ {0.1, 0.3, 1, 3, 10}
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Numerical experiments: III
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training ResNet50 (23 million parameters) on ImageNet dataset
• training loss: better than SGDM, similar to AdamW
• test performance: slightly worse than AdamW
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Outline

• minimizing single nonnegative function

– nonnegative Gauss-Newton step size rule

– connection with Polyak step size

• generalized Gauss-Newton (prox-linear)

• stochastic NGN method

• extensions and summary



Matrix update version
• regularizd Gauss-Newton step (Levenberg-Marquardt)

pk = arg min
p

1

N

N∑
i=1

(
ri(x) +∇ri(x)>p

)2
+

1

2σ
‖p‖2

• general form: xk+1 = xk − Gσ(xk)−1∇f (xk), where

Gσ(x) =
1

σ
I +

1

N

N∑
i=1

1

2fi(x)
∇fi(x)∇fi(x)>

• reducing storage and computation cost:
– sampling subsets, low-rank update
– diagonal or block-diagonal approximations

27/28



Summary

• exploiting nonnegativity to derive adaptive step size rule

– create virtual structure to use Gauss-Newton trick
– close connection with Polyak step size

• extension to generalized Gauss-Newton setting

• convergence theory + promising empirical results

current and future work

• experiments and analysis of NGN + momentum

• reduction schedule of σ using ideas from trust-region methods
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