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Motivation

empirical risk minimization (ERM) (in modern deep learning)

minimize f(x) := —Z fi(x)
many previous and concurrent works . ..

e stochastic optimization: minimize f(x) := E,[f,(x)]
® minimizing finite-sums: variance reduction, acceleration, ...
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Motivation

empirical risk minimization (ERM) (in modern deep learning)

minimize f(x) := lz fi(x)

many previous and concurrent works . ..
e stochastic optimization: minimize f(x) := E,[f,(x)]
® minimizing finite-sums: variance reduction, acceleration, ...

focus of this talk
® f; smooth but can be nonconvex

e f. > 0: loss functions in machine learning mostly nonnegative
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QOutline

minimizing single nonnegative function

— nonnegative Gauss-Newton (NGN) step size rule
— connection with Polyak step size

generalized Gauss-Newton (prox-linear)
stochastic NGN method

extensions and summary
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Minimizing single nonnegative function

minimize f(x
xeR4 ( )

e f smooth but can be nonconvex
® f non-negative: f(x) > 0 for all x € R”

can apply to any f that has nontrivial lower bound f* < f*:

f(x) < f(x) = "
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Minimizing single nonnegative function

minimize f(x
xeR4 ( )

e f smooth but can be nonconvex
® f non-negative: f(x) > 0 for all x € R”

can apply to any f that has nontrivial lower bound f* < f*:

f(x) < f(x) = "

the trick: let r(x) = y/f(x) and consider

minimize r?(x)
xER"

r(x) may not arise naturally, e.g., f(x) = —log(s(x)) with s(x)<1
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Gauss-Newton method

XKL = k4 pk

where ,
p* = argmin, (r(x*)+ Vr(x*)"p)
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Gauss-Newton method

XKL = k4 pk

where ,
p* = argmin, (r(x*)+ Vr(x*)"p)

e solving (r(x*) + Vr(x*)"p) Vr(x*) = 0 (under-determined)

r(x¥)

K= _ (Vr VY iYW r(xk) = -
pl=— (Vr(x)Vr(x)") r(x)Vr(x) [V r(x9)|2

Vr(x¥)
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Gauss-Newton method

XKL = k4 pk

where ,
p* = argmin, (r(x*)+ Vr(x*)"p)

e solving (r(x*) + Vr(x*)"p) Vr(x*) = 0 (under-determined)

r(x¥)

K= _ (Vr VY iYW r(xk) = -
pl=— (Vr(x)Vr(x)") r(x)Vr(x) [V r(x9)|2

Vr(x¥)

e using Vr(x) = > lf(X)Vf(x)

2f(xk)
x = xk - 2 L yf(xk
wRRE Y )
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Gauss-Newton method

XKL = k4 pk

where ,
p* = argmin, (r(x*)+ Vr(x*)"p)

e solving (r(x*) + Vr(x*)"p) Vr(x*) = 0 (under-determined)

r(x¥)

K= _ (Vr VY iYW r(xk) = -
pl=— (Vr(x)Vr(x)") r(x)Vr(x) [V r(x9)|2

Vr(x¥)

e using Vr(x) = lf(X)Vf(x)

2

2f(xk)
Kt = 3k 22 L yf(xk
wRRE Y )

gradient descent with variable step size (c.f. Polyak if f*=0) .



Polyak step size
(sub)gradient method for convex optimization
Xk+1 — Xk . ’Yka(Xk)
Polyak step size rule:

F(xk) — £+
= TV
IV

-

1935-2023
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Polyak step size

(sub)gradient method for convex optimization

XK = xk — 4, V£(x9)
Polyak step size rule:
f(xk) — F*
HTIVEAIP
derivation:
I =X = fIx* = V() — X2

= ||Ix* — x*||> = 27, VF(x*) T (x* -

1935-2023

) + YNV ()

< [l = X ? = 29 (F () = £) + 7 VE(9)|2

minimizing the upper bound to obtain optimal ~,
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Universal optimality of Polyak step size

theorem (Hazan and Kakade 2019)

GDy 2LD? G2 1\ K
S

f(Kk)_f*Smm{\/Ea k ,uk

where x* = argmin, .1 f(x) and Dy = [|x° — x*||
assumptions convex & convex & p-convex & - [i-convex &
|Vf]] < G L-smooth [|[Vf|| <G L-smooth
—Ly
rate of f(x*)—f* VLE % ﬁ e n
step size vk \/LE % ﬁ %
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Instability when f* unknown

Gauss-Newton step size rule:

Xk+1 — Xk

Quadratic, loss

. f(x*)—0
IV £(x¥)[2

example: linear regression with f* > 0

PS, 0 =0.03
PS, 0 =0.01
PS, 0 =0.003
PGN, 0 =0.1
PGN, 0 = 0.35
PGN, 0 = 0.6
PGN, 0 = 0.85

102 §

10! 4

10° 4

1071 4

1024

10734

V(x9)

Quadratic, effective learning rate

Y

S e

10° 10t 102 103
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Modifying Polyak step size
e gradually tighten lower bound (Hazan and Kakade 2019)
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Modifying Polyak step size
e gradually tighten lower bound (Hazan and Kakade 2019)
. . . f(xk
e clipping the step size: v, = min {W, 0}

pk = arg min {max{O F(x*)+ VI(x*)"p} + — HPH2}
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Modifying Polyak step size
e gradually tighten lower bound (Hazan and Kakade 2019)
. . . f(xk
e clipping the step size: v, = min {W, 0}

p _argmln{max{O F(x*)+ VF(x*)"p} + JHPH2}

e Gauss-Newton + trust region: v, = min {”v2::§x ;\\2’ HW( )|}

p* = argmin (r(x*) + Vr(xk)Tp)2

lpll<e

8/28



Modifying Polyak step size
gradually tighten lower bound (Hazan and Kakade 2019)
.- . . . f(x*)
clipping the step size: v, = min {—||w(xk)”2, 0}
p —argmln{max{O F(x*)+ VF(x*)"p} + aHsz}

2f(x¥)

Gauss-Newton + trust region: v, = min {”w( ik HW(

p* = argmin (r(x*) + Vr(xk)Tp)2
lpll<e
regularized Gauss-Newton (Levenberg-Marquardt)

: 2 1
pk = argmin {(r(xk) +Vr(x¥)p)" + %Hpﬂz}

p

)I}
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Regularized Gauss-Newton step size

sk H = ok 4 pk
where
: 2 1
pk = argmin {(r(xk) +Vr(x¥)p)" + 5”’3”2}
p
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Regularized Gauss-Newton step size

XK1 = xk 4 pk

where
. 2 1
pk = argmin {(r(xk) +Vr(x¥)p)" + 2—Hp||2}
p g
e optimality condition

1
(r(x*) + Vr(x*)Tp) Vr(x*) + P= 0
® unique solution

b= — G/ " Vr<x’<)Vr(xk>T) V(e

g
= V(x*
e e e
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Properties of NGN step size

o

L+ 5761 V()7

XKL = Xk — 4 VF(x9), Vi =

® range of step size (similar to clipping)

1
e [L+—a “]
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Properties of NGN step size

o

L+ 5761 V()7

XKL = Xk — 4 VF(x9), Vi =

® range of step size (similar to clipping)

1
e [LJr—a “}

® harmonic mean of (naively modified) Polyak and constant
1 an _ 2f(x¥)-0
W=T T W T Toamans
Ik F T IVAP

— o0 — 0: almost constant step size o

— 0 — 00: naive modification of Polyak step size
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Numerical experiments

minimizing 2-D convex quadratic with f* =0
e gradient descent (GD) with constant step size 7
e NGN with hyperparmaeter o (variable step size i)

Quadratic 2D, loss Quadratic 2D, effective learning rate
10" 4 é/
0] N, GD, n=1/L
1071 ] KX GD, n=2/L A
R —— GD,n=2.2/L ;o\
1072 4 —— GD, n=5/L e
103 ] NGN, o=1/L .
NGN, o= 2/L ! 1
1074 -== NGN, 0=22/L #
10-5 ] --= NGN, n=5/L
-—-- 2L

107 T T T T T T T T

10° 10t 10?2 103 100 10t 102 103
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logistic regression on

Numerical experiments

Cancer Dataset, Train Loss

Cancer Dataset, effective learning rate

NGN-det, 0 = 1

NGN-det, 0 = 5

—— NGN-det, 0 = 10
GD,y=05
GD,y=1

—— GD,y=5

— GD,y=10

——

10° 10! 102
iteration

Wine Dataset, Train Loss

10° 10! 102
iteration

Wine Dataset, effective learning rate

NGN-det, 0 = 20
NGN-det, o = 30

—— NGN-det, 0 = 40
GD, y =20
GD,y =30

—— GD,y=40

10t

10° 10t 10? 10°
iteration

iteration

Dynamics, PCA proj.

NGN-det, 0=10
GD, y=10

Dynamics, PCA proj.

NGN-det, o = 40
GD, y=40

LIBSVM datasets (Breast Cancer, Wine)
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Convergence results: strongly convex

k1 _ k. £(xk o

thm: if f nonnegative, p-convex, L-smooth, and ¢ < 1/, then

k
k  Ux|(2 M 0 _x|2 20 (oL—1 *
| x*—x*||* < (1_L—|—0—1> ||x"—x*]|* + max{O,;(aL_Fl)} f

® o <1/L (regardless of f*): linear convergence to solution

® o0 <1/pand f* = 0: linear convergence to solution
e 0 €(1/L,1/u) and f* > 0: linear convergence to a ball
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Convergence results: convex

o

L+ 5761 V()7

XKL = Xk — 4, VF(x9), Vi =

thm: if f nonnegative, convex and L-smooth, then for any o > 0,

0 _ *|I2 2009l — 1

Fey — < =X max{O i } -
ok o

where £ = L™ Ix/ and 5 = 2

® g <1/(2L): sublinear convergence to optimal value

e f* =0 (for all ¢ > 0): sublinear convergence to optimal value

e o0 >1/(2L) and f* > 0: sublinear convergence to a ball
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Convergence results: nonconvex

o

KL ok o T F (K

thm: if f nonnegative and L-smooth and ¢ < 2/L, then

21 (x°

)

min_ [VFGH)? < ZI\W(X")HQ < [(“" )}

ke[K—1] 2— Lo

(cannot have o arbitrarily large)

K
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Outline

minimizing single nonnegative function

— nonnegative Gauss-Newton step size rule
— connection with Polyak step size

generalized Gauss-Newton (prox-linear)
stochastic NGN method

extensions and summary



Generalized Gauss-Newton (prox-linear)

minimize {f(x) := h(c(x))}

xERd
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Generalized Gauss-Newton (prox—linear)
minig\ize {f(x) = h(c(x))}
x€eR4
¢ update rule:
X = x* 4 p*
where
K . k KT 1 2
p*“ = arg min {h(C(X )+VC(X ) p) —|‘_0Hp|| }

p
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Generalized Gauss-Newton (prox-linear)
migeirlgldize {f(x) := h(c(x))}

e update rule:
XKL — ek 4 pk
where

: 1
pk = argmin {h(c(xk) + Vc(xk)Tp) + EHsz}

p

e what if h does not have simple proximal mapping?

16/28



Generalized Gauss-Newton (prox-linear)
miniarize {f(x) := h(c(x))}
xeR4
e update rule:
STk ph
where
p* = arg min h(c(xk) + Vc(xk)Tp) + inH2
20

p
e what if h does not have simple proximal mapping?

p* = arg min {f(xk) +VIxX)Tp+ %pTvzf(xk)p}
p

idea: use composite structure to approximate V2f(x¥)
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Generalized Gauss-Newton (prox-linear)
approximate Hessian of f(x) = h(c(x))
V2f(x) = h(c(x))V?c(x) + hjl'(c(x))Vc(x)Vc(x)T
= H(c(x))V2e(x) + GV )V F(x)T
~ L+ p LB V() VF(x)T
H/—/

q(x)
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Generalized Gauss-Newton (prox-linear)
approximate Hessian of f(x) = h(c(x))
V2f(x) = h(c(x))V?c(x) + h”(c( ))Ve(x)Ve(x)"
= H(c())V2e(x) + e V() VF(x)T
~ L+ p LB V() VF(x)T
H/—/

q(x)

determining step size (no need to use prox mapping of h)

pk = argpmin {Vf(xk)Tp + %pT G/ + q(x)Vf(x)Vf(x)T> p}

= T eatDNARE Y )
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Generalized Gauss-Newton (prox-linear)

minimize {f(x) := h(c(x))}

xeRd
update rule:

o

k1 k £(xk _
X=X VIR W= T RGP

where g(x) = h/;( (i))))2
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Generalized Gauss-Newton (prox-linear)

minimize {f(x) := h(c(x))}

xeRd
update rule:

o

k41 k _ £(xk _
X=X NI, = T ER A

where g(x) = h/;( (E()))l

e quadratic: h(y) = y?, H(y) =2y, h'(y) =2 q(x) = zf%X)

e monomial: h(y) =ay”, ..., 4(x) = =
p—1
® negative log (with 0 < y < 1 in cross-entropy): h(y) = — log(y),

H(y) = —1/y, i"(y) = 1/y? and thus g(x) =1
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comparing h(y) = —log(y) vs h(y) =y

Numerical experiments

Wine, A =0.0001, Train Loss

0 200 400 600 800 1000

0 100 200 300 400 500 600 700 800

RegCGN-1-log, 0 = 100
~—— RegCGN-1-log, 0 = 150
~——— RegCGN-1-log, o = 200
RegCGN-1-square, 0 = 100
RegCGN-1-square, 0 = 150
- RegCGN-1-square, 0 = 200
GD, n =100
=150
=200

RegCGN-1-log, 0 = 30
~——— RegCGN-1-log, 0 = 40
—— RegCGN-1-log, 0 = 50

RegCGN-1-square, 0 = 30

RegCGN-1-square, 0 = 40
-=~- RegCGN-1-square, 0 = 50

2

Wine, A =0.0001, Eff. learning rate

Wine, A =0.0001, PCA proj.

RegCGN-1-square

107 LTI RegCGN-1-log
GD
|
10t
10°
100 10! 10° 10°
Digits, A = 0.0001, Eff. learning rate
il
100
N RegCGN-1-square
10 ~— RegCGN-1-log
GD
100 100 10? 10°

-16

-32
-a0
-a8
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Numerical experiments

comparing h(y) = —log(y) vs h(y) = y?

Wine, A =0.0001, Eff. learning rate Wine, A =0.0001, PCA proj.
RegCGN-1-square
RegCGN-1-log
GD

Wine, A =0.0001, Train Loss

RegCGN-1-log, 0 = 100
~—— RegCGN-1-log, 150
~——— RegCGN-1-log, o = 200

RegCGN-1-square, 0 = 100

10?

10 RegCGN-1-square, 0 = 150
- -~ RegCGN-1-square, o = 200 10t
107 GD, n = 100
GD, n = 150
107 —— GD, n =200
10°
o 200 400 600 800 1000 10° 10 10? 10°
Digits, A = 0.0001, Eff. learning rate Digits, A = 0.0001, PCA proj.
RegCGN-1-log, o = 30 -
100 —— RegCGN-1-log, o = 40 |1 | |
—— RegCGN-1-log, 0 = 50 0
1072 RegCGN-1-square, 0 = 30
RegCGN-1-square, 0 = 40
104 -=~- RegCGN-1-square, 0 = 50
GD, n =30 RegCGN-1-square
1o GD. n =40 100 RegCGN-1-log
| — ep.n=50 e
10° 10! 10? 10°

0 100 200 300 400 500 600 700 800

h(y) = y? best in practice even for cross-entropy loss

-16

-32
-a0

-a8
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Outline

minimizing single nonnegative function

— nonnegative Gauss-Newton step size rule
— connection with Polyak step size

generalized Gauss-Newton (prox-linear)
stochastic NGN method

extensions and summary



Stochastic NGN method

empirical risk minimization (ERM)

minimize f(x) := %Z fi(x)
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Stochastic NGN method
empirical risk minimization (ERM)
minimize f(x) := %Z fi(x)

SGD with NGN step size rule:
Xk+1 _ Xk . 'Ykaik(Xk)

where i; picked randomly and

o 1
Tk = (X [12
1 + 2f ”Vf;k(xk)H2 . —|- v;c/ki k))
i\ X
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Convergence analysis: Some definitions

define

x* := arg min f(x), ¥ := min f;(x)

and
Ajne := E[f;(X*) - f;'*]a Apos = E[fl*]

® Apos measures average positivity: zero if £ =0 for all /
e Aj, measures interpolation: zero if x* = argmin, f;(x) for all i
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Convergence analysis: Some definitions

define

x* := arg min f(x), ¥ := min f;(x)

and
Ajne := E[f;(X*) - f;'*]a Apos = E[fl*]
® Apos measures average positivity: zero if £ =0 for all /
e Aj, measures interpolation: zero if x* = argmin, f;(x) for all i

possible scenarios

® in general Ap,s > 0 and Ajye > 0

® overparametrized models may have A, = Ajpe = 0

® both Apss = 0, Ajnt > 0 and Apes > 0, Ajpe = 0 feasible in theory
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Convergence results: convex
o

L+ 525l VAP
thm: assume each f; nonnegative, convex and L,-—smooth, and let
L = max; L;, then for any ¢ > 0

E 0 _ x|2
E [f(x¥) - f(x")] < Ix KX I 4 a0 (14 01) A,
No

+ oL -max{0,20L — 1} Apes

cK _ 1 K-1 20
= K 2uk=0 x* and n, = (1+200)2

X=Xk =y VA(X),  w=

where X

o if Aint = Apos = 0, then convergence for any o > 0

e reducing o: oy = 0/vk + 1 leads to O(log(k)/Vk) rate
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Convergence results: nonconvex

o

k+1 ok K
X = x" — 3 Vi (x5), Yk =
- L+ 5 om VT (x})|I?

thm: assume each f; nonnegative, L;-smooth, and let L = max; L;,

then for o < 1/(2L)

O_K noise

ZHW ||2] 12 B = 1 gy12

where A2 . = sup, E[||Vf(x) — V£(x)|]?].

noise

e decreasing o, = 0/vk + 1 leads to O(log(k)/'k) rate
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Numerical experiments: |
logistic regression on LIBSVM datasets (Breast Cancer, Wine)

Cancer Dataset, Train Loss

Cancer Dataset, effective learning rate

NGN-stoc, o = 0.1
NGN-stoc, o = 0.5
—— NGN-stoc, 0 = 1
—— NGN-stoc, 0= 5
SGD, y = 0.1
SGD,y = 0.5
SGD, y =1

.

0 250 500 750 1000 1250 1500 1750 2000
iteration

Wine Dataset, Train Loss

10° 10! 102 103
iteration

Wine Dataset, effective learning rate

NGN-stoc,
NGN-stoc,
—— NGN-stoc, o = 10
—— NGN-stoc, o = 20
SGD,y=1
SGD,y=5
—— SGD, y = 10
SGD, y = 20

A

0 250 500 750 1000 1250 1500 1750 2000
iteration

10° 10! 102 103
iteration

Dynamics, PCA proj.

0 5
Dynamics, PCA proj.

NGN-stoc, 0 =20
SGD, y =20
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Numerical experiments: |l

Train Loss, CIFAR10 on ResNet18, bs = 128, no scheduler Test accuracy, CIFAR10 on ResNet18, bs = 128, no scheduler Effective Stepsize, CIFAR10 on ResNet18, bs = 128, no scheduler
10t

1073

training ResNet18 (11 million parameters) on CIFAR10 dataset
e green: SGD with step sizes v € {0.01, 0.03, 0.1, 0.3, 1}
e red: stochastic NGN with ¢ € {0.1, 0.3, 1, 3, 10}
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6 x 10°

4 x10°

3x10°

2x10°

10° 4

Numerical experiments: Il

Train Loss, Imagenet on ResNet50

SGDM, y=0.1
SGDM, y=3
SGDM, y=0.3
SGDM, y=0.01
NGN-stoc, 0=3
NGN-stoc, 0=10
NGN-stoc, 0=0.3

T
10

T
20

30
Epoch

T T T
40 50 60

6 x10°

4x10°

3x10°

2x10°

10°

Train Loss, Imagenet on ResNet50

AdamW, y=0.001
AdamW, y=0.0003
AdamW, y=0.003
NGN-stoc, 0=3
NGN-stoc, 0 =10
NGN-stoc, 0= 0.3

T
10

T
20

30
Epoch

T T T
40 50 60

training ResNet50 (23 million parameters) on ImageNet dataset
¢ training loss: better than SGDM, similar to AdamW
e test performance: slightly worse than AdamW
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Outline

minimizing single nonnegative function

— nonnegative Gauss-Newton step size rule
— connection with Polyak step size

generalized Gauss-Newton (prox-linear)
stochastic NGN method

extensions and summary



Matrix update version

e regularizd Gauss-Newton step (Levenberg-Marquardt)

N

.1 2 1
pk = arg mlnﬁz (ri(x) + Vri(x)"p) _|_2_HPH2
P i=1 g
e general form: x*t1 = xk — G, (x¥)"IVf(x*), where
1 N
GU g Z ( )

® reducing storage and computation cost:
— sampling subsets, low-rank update

— diagonal or block-diagonal approximations
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Summary

e exploiting nonnegativity to derive adaptive step size rule

— create virtual structure to use Gauss-Newton trick
— close connection with Polyak step size

® extension to generalized Gauss-Newton setting

® convergence theory + promising empirical results

current and future work
e experiments and analysis of NGN 4+ momentum

® reduction schedule of ¢ using ideas from trust-region methods
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